History
The first tables of equivalent weights were published for acids and bases by Carl Friedrich Wenzel in 1777. A larger set of tables was prepared, possibly independently, by Jeremias Benjamin Richter, starting in 1792. However, neither Wenzel nor Richter had a single reference point for their tables, and so had to publish separate tables for each pair of acid and base.
John Dalton's first table of atomic weights (1808) suggested a reference point, at least for the elements: taking the equivalent weight of hydrogen to be one unit of mass. However, Dalton's atomic theory was far from universally accepted in the early 19th century. One of the greatest problems was the reaction of hydrogen with oxygen to produce water. One gram of hydrogen reacts with eight grams of oxygen to produce nine grams of water, so the equivalent weight of oxygen was defined as eight grams. However, expressing the reaction in terms of gas volumes following Gay-Lussac's law, two volumes of hydrogen react with one volume of oxygen to produce two volumes of water, suggesting that the atomic weight of oxygen should be sixteen. The work of Charles Frédéric Gerhardt (1816–56), Henri Victor Regnault (1810–78) and Stanislao Cannizzaro (1826–1910) helped to rationalise this and many similar paradoxes, but the problem was still the subject of debate at the Karlsruhe Congress (1860).
Nevertheless, many chemists found equivalent weights to be a useful tool even if they did not subscribe to atomic theory. Equivalent weights were a useful generalisation of Joseph Proust's law of definite proportions (1794) that enabled chemistry to become a quantitative science. French chemist Jean-Baptiste Dumas (1800–84) became one of the more influential opponents of atomic theory, after having embraced it earlier in his career, but was a staunch supporter of equivalent weights.
Insofar as the atomic tables have been drawn up in part following the laws of Wenzel and Richter, in part by simple speculations, they have left plenty of doubts in the best of minds. It was to escape this problem that it was attempted to deduce the atomic weights from the density of the elements in the vapour state, from their specific heat, from their crystalline form. But one must not forget that the value of the figures deduced from these properties is not in the least absolute… To sum up, what have left from this ambitious excursion that we have allowed ourselves in the realm of the atoms? Nothing, nothing necessary at the very least. What we have left is the conviction that chemistry got itself lost there, as it always does when it abandons experiment, it tried to walk without a guide through the shadows. With experiment as a guide, you find Wenzel's equivalents, Mitscherlich's equivalents, they are nothing else but molecular groups. If I had the power, I would erase the word 'atom' from science, persuaded that it oversteps the evidence of experiment; and, in chemistry, we must never overstep the evidence of experiment.
— Jean-Baptiste Dumas, lecture at the Collège de France, 1843/44
Equivalent weights were not without problems of their own. For a start, the scale based on hydrogen was not particularly practical, as most elements do not react directly with hydrogen to form simple compounds. However, one gram of hydrogen reacts with 8 grams of oxygen to give water or with 35.5 grams of chlorine to give hydrogen chloride: hence 8 grams of oxygen and 35.5 grams of chlorine can be taken to be equivalent to one gram of hydrogen for the measurement of equivalent weights. This system can be extended further through different acids and bases.
Much more serious was the problem of elements which form more than one oxide or series of salts, which have (in today's terminology) different oxidation states. Copper will react with oxygen to form either brick red cuprous oxide (copper(I) oxide, with 63.5 g of copper for 8 g of oxygen) or black cupric oxide (copper(II) oxide, with 32.7 g of copper for 8 g of oxygen), and so has two equivalent weights. Supporters of atomic weights could turn to the Dulong–Petit law (1819), which relates the atomic weight of a solid element to its specific heat capacity, but supporters of equivalent weights had to accept that some elements had multiple "equivalents".
The final death blow for the use of equivalent weights for the elements was the Dmitri Mendeleev's presentation of his periodic table in 1869, in which he related the chemical properties of the elements to the approximate order of their atomic weights. However, equivalent weights continued to be used for many compounds for another hundred years, particularly in analytical chemistry. Equivalent weights of common reagents could be tabulated, simplifying analytical calculations in the days before the widespread availability of electronic calculators: such tables were commonplace in textbooks of analytical chemistry.
Read more about this topic: Equivalent Weight
Famous quotes containing the word history:
“The history of the world is the record of the weakness, frailty and death of public opinion.”
—Samuel Butler (18351902)
“Every generation rewrites the past. In easy times history is more or less of an ornamental art, but in times of danger we are driven to the written record by a pressing need to find answers to the riddles of today.... In times of change and danger when there is a quicksand of fear under mens reasoning, a sense of continuity with generations gone before can stretch like a lifeline across the scary present and get us past that idiot delusion of the exceptional Now that blocks good thinking.”
—John Dos Passos (18961970)
“America is, therefore the land of the future, where, in the ages that lie before us, the burden of the Worlds history shall reveal itself. It is a land of desire for all those who are weary of the historical lumber-room of Old Europe.”
—Georg Wilhelm Friedrich Hegel (17701831)