Euclidean Relations
Euclid's The Elements includes the following "Common Notion 1":
- Things which equal the same thing also equal one another.
Nowadays, the property described by Common Notion 1 is called Euclidean (replacing "equal" by "are in relation with"). The following theorem connects Euclidean relations and equivalence relations:
Theorem. If a relation is Euclidean and reflexive, it is also symmetric and transitive.
Proof:
- (aRc ∧ bRc) → aRb = (aRa ∧ bRa) → aRb = bRa → aRb. Hence R is symmetric.
- (aRc ∧ bRc) → aRb = (aRc ∧ cRb) → aRb. Hence R is transitive.
Hence an equivalence relation is a relation that is Euclidean and reflexive. The Elements mentions neither symmetry nor reflexivity, and Euclid probably would have deemed the reflexivity of equality too obvious to warrant explicit mention.
Read more about this topic: Equivalence Relation
Famous quotes containing the word relations:
“As death, when we come to consider it closely, is the true goal of our existence, I have formed during the last few years such close relations with this best and truest friend of mankind, that his image is not only no longer terrifying to me, but is indeed very soothing and consoling! And I thank my God for graciously granting me the opportunity ... of learning that death is the key which unlocks the door to our true happiness.”
—Wolfgang Amadeus Mozart (17561791)