Equivalence Relation - Euclidean Relations

Euclidean Relations

Euclid's The Elements includes the following "Common Notion 1":

Things which equal the same thing also equal one another.

Nowadays, the property described by Common Notion 1 is called Euclidean (replacing "equal" by "are in relation with"). The following theorem connects Euclidean relations and equivalence relations:

Theorem. If a relation is Euclidean and reflexive, it is also symmetric and transitive.

Proof:

  • (aRcbRc) → aRb = (aRabRa) → aRb = bRaaRb. Hence R is symmetric.
  • (aRcbRc) → aRb = (aRccRb) → aRb. Hence R is transitive.

Hence an equivalence relation is a relation that is Euclidean and reflexive. The Elements mentions neither symmetry nor reflexivity, and Euclid probably would have deemed the reflexivity of equality too obvious to warrant explicit mention.

Read more about this topic:  Equivalence Relation

Famous quotes containing the word relations:

    I want relations which are not purely personal, based on purely personal qualities; but relations based upon some unanimous accord in truth or belief, and a harmony of purpose, rather than of personality. I am weary of personality.... Let us be easy and impersonal, not forever fingering over our own souls, and the souls of our acquaintances, but trying to create a new life, a new common life, a new complete tree of life from the roots that are within us.
    —D.H. (David Herbert)