Equivalence Class - Notation and Formal Definition

Notation and Formal Definition

An equivalence relation is a binary relation ~ satisfying three properties:

  • For every element a in X, a ~ a (reflexivity),
  • For every two elements a and b in X, if a ~ b, then b ~ a (symmetry)
  • For every three elements a, b, and c in X, if a ~ b and b ~ c, then a ~ c (transitivity).

The equivalence class of an element a is denoted and may be defined as the set

of elements that are related to a by ~. The alternative notation R can be used to denote the equivalence class of the element a specifically with respect to the equivalence relation R. This is said to be the R-equivalence class of a.

The set of all equivalence classes in X given an equivalence relation ~ is denoted as X/~ and called the quotient set of X by ~. Each equivalence relation has a canonical projection map, the surjective function π from X to X/~ given by π(x) = .

Read more about this topic:  Equivalence Class

Famous quotes containing the words formal and/or definition:

    Two clergymen disputing whether ordination would be valid without the imposition of both hands, the more formal one said, “Do you think the Holy Dove could fly down with only one wing?”
    Horace Walpole (1717–1797)

    Mothers often are too easily intimidated by their children’s negative reactions...When the child cries or is unhappy, the mother reads this as meaning that she is a failure. This is why it is so important for a mother to know...that the process of growing up involves by definition things that her child is not going to like. Her job is not to create a bed of roses, but to help him learn how to pick his way through the thorns.
    Elaine Heffner (20th century)