Notation and Formal Definition
An equivalence relation is a binary relation ~ satisfying three properties:
- For every element a in X, a ~ a (reflexivity),
- For every two elements a and b in X, if a ~ b, then b ~ a (symmetry)
- For every three elements a, b, and c in X, if a ~ b and b ~ c, then a ~ c (transitivity).
The equivalence class of an element a is denoted and may be defined as the set
of elements that are related to a by ~. The alternative notation R can be used to denote the equivalence class of the element a specifically with respect to the equivalence relation R. This is said to be the R-equivalence class of a.
The set of all equivalence classes in X given an equivalence relation ~ is denoted as X/~ and called the quotient set of X by ~. Each equivalence relation has a canonical projection map, the surjective function π from X to X/~ given by π(x) = .
Read more about this topic: Equivalence Class
Famous quotes containing the words formal and/or definition:
“This is no argument against teaching manners to the young. On the contrary, it is a fine old tradition that ought to be resurrected from its current mothballs and put to work...In fact, children are much more comfortable when they know the guide rules for handling the social amenities. Its no more fun for a child to be introduced to a strange adult and have no idea what to say or do than it is for a grownup to go to a formal dinner and have no idea what fork to use.”
—Leontine Young (20th century)
“Im beginning to think that the proper definition of Man is an animal that writes letters.”
—Lewis Carroll [Charles Lutwidge Dodgson] (18321898)