Notation and Formal Definition
An equivalence relation is a binary relation ~ satisfying three properties:
- For every element a in X, a ~ a (reflexivity),
- For every two elements a and b in X, if a ~ b, then b ~ a (symmetry)
- For every three elements a, b, and c in X, if a ~ b and b ~ c, then a ~ c (transitivity).
The equivalence class of an element a is denoted and may be defined as the set
of elements that are related to a by ~. The alternative notation R can be used to denote the equivalence class of the element a specifically with respect to the equivalence relation R. This is said to be the R-equivalence class of a.
The set of all equivalence classes in X given an equivalence relation ~ is denoted as X/~ and called the quotient set of X by ~. Each equivalence relation has a canonical projection map, the surjective function π from X to X/~ given by π(x) = .
Read more about this topic: Equivalence Class
Famous quotes containing the words formal and/or definition:
“The bed is now as public as the dinner table and governed by the same rules of formal confrontation.”
—Angela Carter (19401992)
“The definition of good prose is proper words in their proper places; of good verse, the most proper words in their proper places. The propriety is in either case relative. The words in prose ought to express the intended meaning, and no more; if they attract attention to themselves, it is, in general, a fault.”
—Samuel Taylor Coleridge (17721834)