Equipartition Theorem - History

History

This article uses the non-SI unit of cal/(mol·K) for heat capacity, because it offers greater accuracy for single digits.
For an approximate conversion to the corresponding SI unit of
J/(mol·K), such values should be multiplied by 4.2 J/cal.

The equipartition of kinetic energy was proposed initially in 1843, and more correctly in 1845, by John James Waterston. In 1859, James Clerk Maxwell argued that the kinetic heat energy of a gas is equally divided between linear and rotational energy. In 1876, Ludwig Boltzmann expanded on this principle by showing that the average energy was divided equally among all the independent components of motion in a system. Boltzmann applied the equipartition theorem to provide a theoretical explanation of the Dulong–Petit law for the specific heat capacities of solids.

The history of the equipartition theorem is intertwined with that of specific heat capacity, both of which were studied in the 19th century. In 1819, the French physicists Pierre Louis Dulong and Alexis Thérèse Petit discovered that the specific heat capacities of solid elements at room temperature were inversely proportional to the atomic weight of the element. Their law was used for many years as a technique for measuring atomic weights. However, subsequent studies by James Dewar and Heinrich Friedrich Weber showed that this Dulong–Petit law holds only at high temperatures; at lower temperatures, or for exceptionally hard solids such as diamond, the specific heat capacity was lower.

Experimental observations of the specific heat capacities of gases also raised concerns about the validity of the equipartition theorem. The theorem predicts that the molar heat capacity of simple monoatomic gases should be roughly 3 cal/(mol·K), whereas that of diatomic gases should be roughly 7 cal/(mol·K). Experiments confirmed the former prediction, but found that molar heat capacities of diatomic gases were typically about 5 cal/(mol·K), and fell to about 3 cal/(mol·K) at very low temperatures. Maxwell noted in 1875 that the disagreement between experiment and the equipartition theorem was much worse than even these numbers suggest; since atoms have internal parts, heat energy should go into the motion of these internal parts, making the predicted specific heats of monoatomic and diatomic gases much higher than 3 cal/(mol·K) and 7 cal/(mol·K), respectively.

A third discrepancy concerned the specific heat of metals. According to the classical Drude model, metallic electrons act as a nearly ideal gas, and so they should contribute (3/2) NekB to the heat capacity by the equipartition theorem, where Ne is the number of electrons. Experimentally, however, electrons contribute little to the heat capacity: the molar heat capacities of many conductors and insulators are nearly the same.

Several explanations of equipartition's failure to account for molar heat capacities were proposed. Boltzmann defended the derivation of his equipartition theorem as correct, but suggested that gases might not be in thermal equilibrium because of their interactions with the aether. Lord Kelvin suggested that the derivation of the equipartition theorem must be incorrect, since it disagreed with experiment, but was unable to show how. In 1900 Lord Rayleigh instead put forward a more radical view that the equipartition theorem and the experimental assumption of thermal equilibrium were both correct; to reconcile them, he noted the need for a new principle that would provide an "escape from the destructive simplicity" of the equipartition theorem. Albert Einstein provided that escape, by showing in 1906 that these anomalies in the specific heat were due to quantum effects, specifically the quantization of energy in the elastic modes of the solid. Einstein used the failure of equipartition to argue for the need of a new quantum theory of matter. Nernst's 1910 measurements of specific heats at low temperatures supported Einstein's theory, and led to the widespread acceptance of quantum theory among physicists.

Read more about this topic:  Equipartition Theorem

Famous quotes containing the word history:

    So in accepting the leading of the sentiments, it is not what we believe concerning the immortality of the soul, or the like, but the universal impulse to believe, that is the material circumstance, and is the principal fact in this history of the globe.
    Ralph Waldo Emerson (1803–1882)

    While the Republic has already acquired a history world-wide, America is still unsettled and unexplored. Like the English in New Holland, we live only on the shores of a continent even yet, and hardly know where the rivers come from which float our navy.
    Henry David Thoreau (1817–1862)

    You that would judge me do not judge alone
    This book or that, come to this hallowed place
    Where my friends’ portraits hang and look thereon;
    Ireland’s history in their lineaments trace;
    Think where man’s glory most begins and ends
    And say my glory was I had such friends.
    William Butler Yeats (1865–1939)