Principal Properties
Assuming the lengths of the sides of the equilateral triangle are a, we can determine using the Pythagorean theorem that:
- The area is
- The perimeter is
- The radius of the circumscribed circle is
- The radius of the inscribed circle is
- The geometric center of the triangle is the center of the circumscribed and inscribed circles
- And the altitude (height) from any side is .
In an equilateral triangle, the altitudes, the angle bisectors, the perpendicular bisectors and the medians to each side coincide.
Read more about this topic: Equilateral Triangle
Famous quotes containing the words principal and/or properties:
“It is perhaps the principal admirableness of the Gothic schools of architecture, that they receive the results of the labour of inferior minds; and out of fragments full of imperfection ... raise up a stately and unaccusable whole.”
—John Ruskin (18191900)
“The reason why men enter into society, is the preservation of their property; and the end why they choose and authorize a legislative, is, that there may be laws made, and rules set, as guards and fences to the properties of all the members of the society: to limit the power, and moderate the dominion, of every part and member of the society.”
—John Locke (16321704)