Some Basic Logical Properties of Equality
The substitution property states:
- For any quantities a and b and any expression F(x), if a = b, then F(a) = F(b) (if either side makes sense, i.e. is well-formed).
In first-order logic, this is a schema, since we can't quantify over expressions like F (which would be a functional predicate).
Some specific examples of this are:
- For any real numbers a, b, and c, if a = b, then a + c = b + c (here F(x) is x + c);
- For any real numbers a, b, and c, if a = b, then a − c = b − c (here F(x) is x − c);
- For any real numbers a, b, and c, if a = b, then ac = bc (here F(x) is xc);
- For any real numbers a, b, and c, if a = b and c is not zero, then a/c = b/c (here F(x) is x/c).
The reflexive property states:
- For any quantity a, a = a.
This property is generally used in mathematical proofs as an intermediate step.
The symmetric property states:
- For any quantities a and b, if a = b, then b = a.
The transitive property states:
- For any quantities a, b, and c, if a = b and b = c, then a = c.
The binary relation "is approximately equal" between real numbers or other things, even if more precisely defined, is not transitive (it may seem so at first sight, but many small differences can add up to something big). However, equality almost everywhere is transitive.
Although the symmetric and transitive properties are often seen as fundamental, they can be proved, if the substitution and reflexive properties are assumed instead.
Read more about this topic: Equality (mathematics)
Famous quotes containing the words basic, logical, properties and/or equality:
“Insecurity, commonly regarded as a weakness in normal people, is the basic tool of the actors trade.”
—Miranda Richardson (b. 1958)
“Philosophy aims at the logical clarification of thoughts. Philosophy is not a body of doctrine but an activity. A philosophical work consists essentially of elucidations.”
—Ludwig Wittgenstein (18891951)
“The reason why men enter into society, is the preservation of their property; and the end why they choose and authorize a legislative, is, that there may be laws made, and rules set, as guards and fences to the properties of all the members of the society: to limit the power, and moderate the dominion, of every part and member of the society.”
—John Locke (16321704)
“Let the same mind be in you that was in Christ Jesus, who, though he was in the form of God, did not regard equality with God as something to be exploited, but emptied himself, taking the form of a slave, being born in human likeness. And being found in human form, he humbled himself and became obedient to the point of death M even death on a cross.”
—Bible: New Testament, Philippians 2:5-8.