Some Basic Logical Properties of Equality
The substitution property states:
- For any quantities a and b and any expression F(x), if a = b, then F(a) = F(b) (if either side makes sense, i.e. is well-formed).
In first-order logic, this is a schema, since we can't quantify over expressions like F (which would be a functional predicate).
Some specific examples of this are:
- For any real numbers a, b, and c, if a = b, then a + c = b + c (here F(x) is x + c);
- For any real numbers a, b, and c, if a = b, then a − c = b − c (here F(x) is x − c);
- For any real numbers a, b, and c, if a = b, then ac = bc (here F(x) is xc);
- For any real numbers a, b, and c, if a = b and c is not zero, then a/c = b/c (here F(x) is x/c).
The reflexive property states:
- For any quantity a, a = a.
This property is generally used in mathematical proofs as an intermediate step.
The symmetric property states:
- For any quantities a and b, if a = b, then b = a.
The transitive property states:
- For any quantities a, b, and c, if a = b and b = c, then a = c.
The binary relation "is approximately equal" between real numbers or other things, even if more precisely defined, is not transitive (it may seem so at first sight, but many small differences can add up to something big). However, equality almost everywhere is transitive.
Although the symmetric and transitive properties are often seen as fundamental, they can be proved, if the substitution and reflexive properties are assumed instead.
Read more about this topic: Equality (mathematics)
Famous quotes containing the words basic, logical, properties and/or equality:
“We cant nourish our children if we dont nourish ourselves.... Parents who manage to stay married, sane, and connected to each other share one basic characteristic: The ability to protect even small amounts of time together no matter what else is going on in their lives.”
—Ron Taffel (20th century)
“I see mysteries and complications wherever I look, and I have never met a steadily logical person.”
—Martha Gellhorn (b. 1908)
“The reason why men enter into society, is the preservation of their property; and the end why they choose and authorize a legislative, is, that there may be laws made, and rules set, as guards and fences to the properties of all the members of the society: to limit the power, and moderate the dominion, of every part and member of the society.”
—John Locke (16321704)
“His lordship may compel us to be equal upstairs, but there will never be equality in the servants hall.”
—J.M. (James Matthew)