Equality (mathematics) - Some Basic Logical Properties of Equality

Some Basic Logical Properties of Equality

The substitution property states:

  • For any quantities a and b and any expression F(x), if a = b, then F(a) = F(b) (if either side makes sense, i.e. is well-formed).

In first-order logic, this is a schema, since we can't quantify over expressions like F (which would be a functional predicate).

Some specific examples of this are:

  • For any real numbers a, b, and c, if a = b, then a + c = b + c (here F(x) is x + c);
  • For any real numbers a, b, and c, if a = b, then ac = bc (here F(x) is xc);
  • For any real numbers a, b, and c, if a = b, then ac = bc (here F(x) is xc);
  • For any real numbers a, b, and c, if a = b and c is not zero, then a/c = b/c (here F(x) is x/c).

The reflexive property states:

For any quantity a, a = a.

This property is generally used in mathematical proofs as an intermediate step.

The symmetric property states:

  • For any quantities a and b, if a = b, then b = a.

The transitive property states:

  • For any quantities a, b, and c, if a = b and b = c, then a = c.

The binary relation "is approximately equal" between real numbers or other things, even if more precisely defined, is not transitive (it may seem so at first sight, but many small differences can add up to something big). However, equality almost everywhere is transitive.

Although the symmetric and transitive properties are often seen as fundamental, they can be proved, if the substitution and reflexive properties are assumed instead.

Read more about this topic:  Equality (mathematics)

Famous quotes containing the words basic, logical, properties and/or equality:

    The basic difference between classical music and jazz is that in the former the music is always greater than its performance—Beethoven’s Violin Concerto, for instance, is always greater than its performance—whereas the way jazz is performed is always more important than what is being performed.
    André Previn (b. 1929)

    I see mysteries and complications wherever I look, and I have never met a steadily logical person.
    Martha Gellhorn (b. 1908)

    The reason why men enter into society, is the preservation of their property; and the end why they choose and authorize a legislative, is, that there may be laws made, and rules set, as guards and fences to the properties of all the members of the society: to limit the power, and moderate the dominion, of every part and member of the society.
    John Locke (1632–1704)

    If a being suffers there can be no moral justification for refusing to take that suffering into consideration. No matter what the nature of the being, the principle of equality requires that its suffering be counted equally with the like suffering—insofar as rough comparisons can be made—of any other being.
    Peter Singer (b. 1946)