In information theory an entropy encoding is a lossless data compression scheme that is independent of the specific characteristics of the medium.
One of the main types of entropy coding creates and assigns a unique prefix-free code to each unique symbol that occurs in the input. These entropy encoders then compress data by replacing each fixed-length input symbol with the corresponding variable-length prefix-free output codeword. The length of each codeword is approximately proportional to the negative logarithm of the probability. Therefore, the most common symbols use the shortest codes.
According to Shannon's source coding theorem, the optimal code length for a symbol is −logbP, where b is the number of symbols used to make output codes and P is the probability of the input symbol.
Two of the most common entropy encoding techniques are Huffman coding and arithmetic coding. If the approximate entropy characteristics of a data stream are known in advance (especially for signal compression), a simpler static code may be useful. These static codes include universal codes (such as Elias gamma coding or Fibonacci coding) and Golomb codes (such as unary coding or Rice coding).
Read more about Entropy Encoding: Entropy As A Measure of Similarity
Famous quotes containing the word entropy:
“Just as the constant increase of entropy is the basic law of the universe, so it is the basic law of life to be ever more highly structured and to struggle against entropy.”
—Václav Havel (b. 1936)