In statistics, the empirical distribution function, or empirical cdf, is the cumulative distribution function associated with the empirical measure of the sample. This cdf is a step function that jumps up by 1/n at each of the n data points. The empirical distribution function estimates the true underlying cdf of the points in the sample. A number of results exist which allow to quantify the rate of convergence of the empirical cdf to its limit.
Read more about Empirical Distribution Function: Definition, Asymptotic Properties
Famous quotes containing the words empirical, distribution and/or function:
“To develop an empiricist account of science is to depict it as involving a search for truth only about the empirical world, about what is actual and observable.... It must involve throughout a resolute rejection of the demand for an explanation of the regularities in the observable course of nature, by means of truths concerning a reality beyond what is actual and observable, as a demand which plays no role in the scientific enterprise.”
—Bas Van Fraassen (b. 1941)
“My topic for Army reunions ... this summer: How to prepare for war in time of peace. Not by fortifications, by navies, or by standing armies. But by policies which will add to the happiness and the comfort of all our people and which will tend to the distribution of intelligence [and] wealth equally among all. Our strength is a contented and intelligent community.”
—Rutherford Birchard Hayes (18221893)
“Science has fulfilled her function when she has ascertained and enunciated truth.”
—Thomas Henry Huxley (182595)