Elliptic Integral - Incomplete Elliptic Integral of The Third Kind

The incomplete elliptic integral of the third kind Π is

 \Pi(n ; \varphi \setminus \alpha) = \int_0^\varphi \frac{1}{1-n\sin^2 \theta}
\frac {d\theta}{\sqrt{1-(\sin\theta\sin \alpha)^2}}, or
 \Pi(n ; \varphi \,|\,m) = \int_{0}^{\sin \varphi} \frac{1}{1-nt^2}
\frac{dt}{\sqrt{(1-m t^2)(1-t^2) }}.

The number n is called the characteristic and can take on any value, independently of the other arguments. Note though that the value is infinite, for any m.

A relation with the Jacobian elliptic functions is

The meridian arc length from the equator to latitude is also related to a special case of Π:

Read more about this topic:  Elliptic Integral

Famous quotes containing the words incomplete, integral and/or kind:

    Someone once asked me why women don’t gamble as much as men do, and I gave the common-sensical reply that we don’t have as much money. That was a true but incomplete answer. In fact, women’s total instinct for gambling is satisfied by marriage.
    Gloria Steinem (b. 1934)

    Painting myself for others, I have painted my inward self with colors clearer than my original ones. I have no more made my book than my book has made me—a book consubstantial with its author, concerned with my own self, an integral part of my life; not concerned with some third-hand, extraneous purpose, like all other books.
    Michel de Montaigne (1533–1592)

    “The unities, sir,’ he said, “are a completeness—a kind of universal dovetailedness with regard to place and time—a sort of general oneness, if I may be allowed to use so strong an expression. I take those to be the dramatic unities, so far as I have been enabled to bestow attention upon them, and I have read much upon the subject, and thought much.”
    Charles Dickens (1812–1870)