Elliptic Integral - Complete Elliptic Integral of The Second Kind

The complete elliptic integral of the second kind E is proportional to the circumference of the ellipse :

where a is the semi-major axis, and e is the eccentricity.

E may be defined as

or more compactly in terms of the incomplete integral of the second kind as

It can be expressed as a power series

which is equivalent to

In terms of the Gauss hypergeometric function, the complete elliptic integral of the second kind can be expressed as

The complete elliptic integral of the second kind can be most efficiently computed in terms of the arithmetic-geometric mean and its modification.

Read more about this topic:  Elliptic Integral

Famous quotes containing the words complete, integral and/or kind:

    It is ... pathetic to observe the complete lack of imagination on the part of certain employers and men and women of the upper-income levels, equally devoid of experience, equally glib with their criticism ... directed against workers, labor leaders, and other villains and personal devils who are the objects of their dart-throwing. Who doesn’t know the wealthy woman who fulminates against the “idle” workers who just won’t get out and hunt jobs?
    Mary Barnett Gilson (1877–?)

    An island always pleases my imagination, even the smallest, as a small continent and integral portion of the globe. I have a fancy for building my hut on one. Even a bare, grassy isle, which I can see entirely over at a glance, has some undefined and mysterious charm for me.
    Henry David Thoreau (1817–1862)

    Older women can afford to agree that femininity is a charade, a matter of coloured hair, écru lace and whalebones, the kind of slap and tat that transvestites are in love with, and no more.
    Germaine Greer (b. 1939)