Elliptic Integral - Complete Elliptic Integral of The Second Kind

The complete elliptic integral of the second kind E is proportional to the circumference of the ellipse :

where a is the semi-major axis, and e is the eccentricity.

E may be defined as

or more compactly in terms of the incomplete integral of the second kind as

It can be expressed as a power series

which is equivalent to

In terms of the Gauss hypergeometric function, the complete elliptic integral of the second kind can be expressed as

The complete elliptic integral of the second kind can be most efficiently computed in terms of the arithmetic-geometric mean and its modification.

Read more about this topic:  Elliptic Integral

Famous quotes containing the words complete, integral and/or kind:

    The complete life, the perfect pattern, includes old age as well as youth and maturity. The beauty of the morning and the radiance of noon are good, but it would be a very silly person who drew the curtains and turned on the light in order to shut out the tranquillity of the evening. Old age has its pleasures, which, though different, are not less than the pleasures of youth.
    W. Somerset Maugham (1874–1965)

    Make the most of your regrets; never smother your sorrow, but tend and cherish it till it come to have a separate and integral interest. To regret deeply is to live afresh.
    Henry David Thoreau (1817–1862)

    There is ... no glamor at banquets—I mean the large formal banquets of big associations and societies. There is only a kind of dignified confusion that gradually unhinges the mind.
    James Thurber (1894–1961)