The complete elliptic integral of the second kind E is proportional to the circumference of the ellipse :
where a is the semi-major axis, and e is the eccentricity.
E may be defined as
or more compactly in terms of the incomplete integral of the second kind as
It can be expressed as a power series
which is equivalent to
In terms of the Gauss hypergeometric function, the complete elliptic integral of the second kind can be expressed as
The complete elliptic integral of the second kind can be most efficiently computed in terms of the arithmetic-geometric mean and its modification.
Read more about this topic: Elliptic Integral
Famous quotes containing the words complete, integral and/or kind:
“No man, said Birkin, cuts another mans throat unless he wants to cut it, and unless the other man wants it cutting. This is a complete truth. It takes two people to make a murder: a murderer and a murderee.... And a man who is murderable is a man who has in a profound if hidden lust desires to be murdered.”
—D.H. (David Herbert)
“Self-centeredness is a natural outgrowth of one of the toddlers major concerns: What is me and what is mine...? This is why most toddlers are incapable of sharing ... to a toddler, whats his is what he can get his hands on.... When something is taken away from him, he feels as though a piece of himan integral pieceis being torn from him.”
—Lawrence Balter (20th century)
“Specialized meaninglessness has come to be regarded, in certain circles, as a kind of hall-mark of true science.”
—Aldous Huxley (18941963)