Definition
Formally, an elliptic function is a function meromorphic on for which there exist two non-zero complex numbers and with (in other words, not parallel), such that and for all .
Denoting the "lattice of periods" by, it follows that for all .
There are two families of 'canonical' elliptic functions: those of Jacobi and those of Weierstrass. Although Jacobi's elliptic functions are older and more directly relevant to applications, modern authors mostly follow Karl Weierstrass when presenting the elementary theory, because his functions are simpler, and any elliptic function can be expressed in terms of them.
Read more about this topic: Elliptic Function
Famous quotes containing the word definition:
“Although there is no universal agreement as to a definition of life, its biological manifestations are generally considered to be organization, metabolism, growth, irritability, adaptation, and reproduction.”
—The Columbia Encyclopedia, Fifth Edition, the first sentence of the article on life (based on wording in the First Edition, 1935)
“Perhaps the best definition of progress would be the continuing efforts of men and women to narrow the gap between the convenience of the powers that be and the unwritten charter.”
—Nadine Gordimer (b. 1923)
“Its a rare parent who can see his or her child clearly and objectively. At a school board meeting I attended . . . the only definition of a gifted child on which everyone in the audience could agree was mine.”
—Jane Adams (20th century)