Elliptic Function - Definition

Definition

Formally, an elliptic function is a function meromorphic on for which there exist two non-zero complex numbers and with (in other words, not parallel), such that and for all .

Denoting the "lattice of periods" by, it follows that for all .

There are two families of 'canonical' elliptic functions: those of Jacobi and those of Weierstrass. Although Jacobi's elliptic functions are older and more directly relevant to applications, modern authors mostly follow Karl Weierstrass when presenting the elementary theory, because his functions are simpler, and any elliptic function can be expressed in terms of them.

Read more about this topic:  Elliptic Function

Famous quotes containing the word definition:

    It is very hard to give a just definition of love. The most we can say of it is this: that in the soul, it is a desire to rule; in the spirit, it is a sympathy; and in the body, it is but a hidden and subtle desire to possess—after many mysteries—what one loves.
    François, Duc De La Rochefoucauld (1613–1680)

    According to our social pyramid, all men who feel displaced racially, culturally, and/or because of economic hardships will turn on those whom they feel they can order and humiliate, usually women, children, and animals—just as they have been ordered and humiliated by those privileged few who are in power. However, this definition does not explain why there are privileged men who behave this way toward women.
    Ana Castillo (b. 1953)

    No man, not even a doctor, ever gives any other definition of what a nurse should be than this—”devoted and obedient.” This definition would do just as well for a porter. It might even do for a horse. It would not do for a policeman.
    Florence Nightingale (1820–1910)