Elliptic Curve - Elliptic Curves Over The Rational Numbers

Elliptic Curves Over The Rational Numbers

A curve E defined over the field of rational numbers is also defined over the field of real numbers, therefore the law of addition (of points with real coordinates) by the tangent and secant method can be applied to E. The explicit formulae show that the sum of two points P and Q with rational coordinates has again rational coordinates, since the line joining P and Q has rational coefficients. This way, one shows that the set of rational points of E forms a subgroup of the group of real points of E. As this group, it is an abelian group, that is, P + Q = Q + P.

Read more about this topic:  Elliptic Curve

Famous quotes containing the words curves, rational and/or numbers:

    At the end of every diet, the path curves back toward the trough.
    Mason Cooley (b. 1927)

    The poet makes himself a seer by a long, prodigious, and rational disordering of all the senses. Every form of love, of suffering, of madness; he searches himself, he consumes all the poisons in him, and keeps only their quintessences.
    Arthur Rimbaud (1854–1891)

    The land cannot be cleansed of the blood that is shed therein, but by the blood of him that shed it.
    —Bible: Hebrew Numbers 35:33.