Elliptic Curve - Elliptic Curves Over A General Field

Elliptic Curves Over A General Field

Elliptic curves can be defined over any field K; the formal definition of an elliptic curve is a non-singular projective algebraic curve over K with genus 1 with a given point defined over K.

If the characteristic of K is neither 2 nor 3, then every elliptic curve over K can be written in the form

where p and q are elements of K such that the right hand side polynomial x3 − pxq does not have any double roots. If the characteristic is 2 or 3, then more terms need to be kept: in characteristic 3, the most general equation is of the form

for arbitrary constants such that the polynomial on the right-hand side has distinct roots (the notation is chosen for historical reasons). In characteristic 2, even this much is not possible, and the most general equation is

provided that the variety it defines is non-singular. If characteristic were not an obstruction, each equation would reduce to the previous ones by a suitable change of variables.

One typically takes the curve to be the set of all points (x,y) which satisfy the above equation and such that both x and y are elements of the algebraic closure of K. Points of the curve whose coordinates both belong to K are called K-rational points.

Read more about this topic:  Elliptic Curve

Famous quotes containing the words curves, general and/or field:

    At the end of every diet, the path curves back toward the trough.
    Mason Cooley (b. 1927)

    Of what use, however, is a general certainty that an insect will not walk with his head hindmost, when what you need to know is the play of inward stimulus that sends him hither and thither in a network of possible paths?
    George Eliot [Mary Ann (or Marian)

    Yet, hermit and stoic as he was, he was really fond of sympathy, and threw himself heartily and childlike into the company of young people whom he loved, and whom he delighted to entertain, as he only could, with the varied and endless anecdotes of his experiences by field and river: and he was always ready to lead a huckleberry-party or a search for chestnuts and grapes.
    Ralph Waldo Emerson (1803–1882)