Electrostatic Discharge - Simulation and Testing For Electronic Devices

Simulation and Testing For Electronic Devices

For testing the susceptibility of electronic devices to ESD from human contact, an ESD Simulator with a special output circuit, called the human body model (HBM) is often used. This consists of a capacitor in series with a resistor. The capacitor is charged to a specified high voltage from an external source, and then suddenly discharged through the resistor into an electrical terminal of the device under test. One of the most widely used models is defined in the JEDEC 22-A114-B standard, which specifies a 100 picofarad capacitor and a 1500 ohm resistor. Other similar standards are MIL-STD-883 Method 3015, and the ESD Association's ESD STM5.1. For comportment to European Union standards for Information Technology Equipment, the IEC/EN 61000-4-2 test specification is used. Guidelines and requirements are given for test cell geometries, generator specifications, test levels, discharge rate and waveform, types and points of discharge on the "victim" product, and functional criteria for gauging product survivability.

A Charged Device Model (CDM) test is used to define the ESD a device can withstand when the device itself has an electrostatic charge and discharges due to metal contact. This discharge type is the most common type of ESD in electronic devices and causes most of the ESD damages in their manufacturing. CDM discharge depends mainly on parasitic parameters of the discharge and is strongly depending on size and type of component package. One of the most widely used CDM simulation test models is defined by the JEDEC.

Other standardized ESD test circuits include the following:

  • Machine model (MM)
  • Transmission line pulse (TLP)

Read more about this topic:  Electrostatic Discharge

Famous quotes containing the words simulation, testing, electronic and/or devices:

    Life, as the most ancient of all metaphors insists, is a journey; and the travel book, in its deceptive simulation of the journey’s fits and starts, rehearses life’s own fragmentation. More even than the novel, it embraces the contingency of things.
    Jonathan Raban (b. 1942)

    Traditional scientific method has always been at the very best 20-20 hindsight. It’s good for seeing where you’ve been. It’s good for testing the truth of what you think you know, but it can’t tell you where you ought to go.
    Robert M. Pirsig (b. 1928)

    The car as we know it is on the way out. To a large extent, I deplore its passing, for as a basically old- fashioned machine, it enshrines a basically old-fashioned idea: freedom. In terms of pollution, noise and human life, the price of that freedom may be high, but perhaps the car, by the very muddle and confusion it causes, may be holding back the remorseless spread of the regimented, electronic society.
    —J.G. (James Graham)

    There is nothing in machinery, there is nothing in embankments and railways and iron bridges and engineering devices to oblige them to be ugly. Ugliness is the measure of imperfection.
    —H.G. (Herbert George)