Electron Transport Chains in Mitochondria
Most eukaryotic cells have mitochondria, which produce ATP from products of the citric acid cycle, fatty acid oxidation, and amino acid oxidation. At the mitochondrial inner membrane, electrons from NADH and succinate pass through the electron transport chain to oxygen, which is reduced to water. The electron transport chain comprises an enzymatic series of electron donors and acceptors. Each electron donor passes electrons to a more electronegative acceptor, which in turn donates these electrons to another acceptor, a process that continues down the series until electrons are passed to oxygen, the most electronegative and terminal electron acceptor in the chain. Passage of electrons between donor and acceptor releases energy, which is used to generate a proton gradient across the mitochondrial membrane by actively “pumping” protons into the intermembrane space, producing a thermodynamic state that has the potential to do work. The entire process is called oxidative phosphorylation, since ADP is phosphorylated to ATP using the energy of hydrogen oxidation in many steps.
A small percentage of electrons do not complete the whole series and instead directly leak to oxygen, resulting in the formation of the free-radical superoxide, a highly reactive molecule that contributes to oxidative stress and has been implicated in a number of diseases and aging.
Read more about this topic: Electron Transport Chain
Famous quotes containing the words transport and/or chains:
“One may disavow and disclaim vices that surprise us, and whereto our passions transport us; but those which by long habits are rooted in a strong and ... powerful will are not subject to contradiction. Repentance is but a denying of our will, and an opposition of our fantasies.”
—Michel de Montaigne (15331592)
“While over Alabama earth
These words are gently spoken:
Serveand hate will die unborn.
Loveand chains are broken.”
—Langston Hughes (20th century)