EELS and EDX
EELS is often spoken of as being complementary to energy-dispersive x-ray spectroscopy (variously called EDX, EDS, XEDS, etc.), which is another common spectroscopy technique available on many electron microscopes. EDX excels at identifying the atomic composition of a material, is quite easy to use, and is particularly sensitive to heavier elements. EELS has historically been a more difficult technique but is in principle capable of measuring atomic composition, chemical bonding, valence and conduction band electronic properties, surface properties, and element-specific pair distance distribution functions. EELS tends to work best at relatively low atomic numbers, where the excitation edges tend to be sharp, well-defined, and at experimentally accessible energy losses (the signal being very weak beyond about 3 keV energy loss). EELS is perhaps best developed for the elements ranging from carbon through the 3d transition metals (from scandium to zinc). For carbon, an experienced spectroscopist can tell at a glance the differences among diamond, graphite, amorphous carbon, and "mineral" carbon (such as the carbon appearing in carbonates). The spectra of 3d transition metals can be analyzed to identify the oxidation states of the atoms. Cu(I), for instance, has a different so-called "white-line" intensity ratio than does Cu(II). This ability to "fingerprint" different forms of the same element is a strong advantage of EELS over EDX. The difference is mainly due to the difference in energy resolution between the two techniques (~1 eV or better for EELS, perhaps a few times ten eV for EDX).
Read more about this topic: Electron Energy Loss Spectroscopy
Famous quotes containing the word eels:
“Going down for the last time, the last breath lying,
I grapple with eels like ropesits ether, its queer
and then, at last, its done. Now the scavengers arrive,
the hard crawlers who come to clean up the ocean floor.”
—Anne Sexton (19281974)