Examples of Electron Counting
- CH4, for the central C
- neutral counting: C contributes 4 electrons, each H radical contributes one each: 4+4(1) = 8 valence electrons
- ionic counting: C4- contributes 8 electrons, each proton contributes 0 each: 8 + 4(0) = 8 electrons.
- Similar for H:
- neutral counting: H contributes 1 electron, the C contributes 1 electron (the other 3 electrons of C are for the other 3 hydrogens in the molecule): 1 + 1(1) = 2 valence electrons.
- ionic counting: H contributes 0 electrons (H+), C4- contributes 2 electrons (per H), 0 + 1(2) = 2 valence electrons
- conclusion: Methane follows the octet-rule for carbon, and the duet rule for hydrogen, and hence is expected to be a stable molecule (as we see from daily life)
- H2S, for the central S
- neutral counting: S contributes 6 electrons, each hydrogen radical contributes one each: 6+2(1) = 8 valence electrons
- ionic counting: S2- contributes 8 electrons, each proton contributes 0: 8+2(0) = 8 valence electrons
- conclusion: with an octet electron count (on sulfur), we can anticipate that H2S would be pseudotetrahedral if one considers the two lone pairs.
- SCl2, for the central S
- neutral counting: S contributes 6 electrons, each chlorine radical contributes one each: 6+2(1) = 8 valence electrons
- ionic counting: S2+ contributes 4 electrons, each chloride anion contributes 2: 4+2(2) = 8 valence electrons
- conclusion: see discussion for H2S above. Notice that both SCl2 and H2S follow the octet rule - the behavior of these molecules is however quite different.
- SF6, for the central S
- neutral counting: S contributes 6 electrons, each fluorine radical contributes one each: 6+6(1) = 12 valence electrons
- ionic counting: S6+ contributes 0 electrons, each fluoride anion contributes 2: 0+6(2) = 12 valence electrons
- conclusion: ionic counting indicates a molecule lacking lone pairs of electrons, therefore its structure will be octahedral, as predicted by VSEPR. One might conclude that this molecule would be highly reactive - but the opposite is true: SF6 is inert, and it is widely used in industry because of this property.
- TiCl4, for the central Ti
- neutral counting: Ti contributes 4 electrons, each chlorine radical contributes one each: 4+4(1) = 8 valence electrons
- ionic counting: Ti4+ contributes 0 electrons, each chloride anion contributes two each: 0+4(2) = 8 valence electrons
- conclusion: Having only 8e (vs. 18 possible), we can anticipate that TiCl4 will be a good Lewis acid. Indeed, it reacts (in some cases violently) with water, alcohols, ethers, amines.
- Fe(CO)5
- neutral counting: Fe contributes 8 electrons, each CO contributes 2 each: 8 + 2(5) = 18 valence electrons
- ionic counting: Fe(0) contributes 8 electrons, each CO contributes 2 each: 8 + 2(5) = 18 valence electrons
- conclusions: this is a special case, where ionic counting is the same as neutral counting, all fragments being neutral. Since this is an 18-electron complex, it is expected to be isolable compound.
- Ferrocene, (C5H5)2Fe, for the central Fe:
- neutral counting: Fe contributes 8 electrons, the 2 cyclopentadienyl-rings contribute 5 each: 8 + 2(5) = 18 electrons
- ionic counting: Fe2+ contributes 6 electrons, the two aromatic cyclopentadienyl rings contribute 6 each: 6 + 2(6) = 18 valence electrons on iron.
- conclusion: Ferrocene is expected to be an isolable compound.
These examples show the methods of electron counting, they are a formalism, and don't have anything to do with real life chemical transformations. Most of the 'fragments' mentioned above do not exist as such; they cannot be kept in a bottle: e.g. the neutral C, the tetraanionic C, the neutral Ti, and the tetracationic Ti are not free species, they are always bound to something, for neutral C, it is commonly found in graphite, charcoal, diamond (sharing electrons with the neighboring carbons), as for Ti which can be found as its metal (where it shares its electrons with neighboring Ti atoms!), C4- and Ti4+ 'exist' only with appropriate counterions (with which they probably share electrons). So these formalisms are only used to predict stabilities or properties of compounds!
Read more about this topic: Electron Counting
Famous quotes containing the words examples of, examples and/or counting:
“It is hardly to be believed how spiritual reflections when mixed with a little physics can hold peoples attention and give them a livelier idea of God than do the often ill-applied examples of his wrath.”
—G.C. (Georg Christoph)
“In the examples that I here bring in of what I have [read], heard, done or said, I have refrained from daring to alter even the smallest and most indifferent circumstances. My conscience falsifies not an iota; for my knowledge I cannot answer.”
—Michel de Montaigne (15331592)
“But counting up to two
Is harder to do....”
—Philip Larkin (19221986)