Formal Definitions of Electromotive Force
Inside a source of emf that is open-circuited, the conservative electrostatic field created by separation of charge exactly cancels the forces producing the emf. Thus, the emf has the same value but opposite sign as the integral of the electric field aligned with an internal path between two terminals A and B of a source of emf in open-circuit condition (the path is taken from the negative terminal to the positive terminal to yield a positive emf, indicating work done on the electrons moving in the circuit). Mathematically:
where Ecs is the conservative electrostatic field created by the charge separation associated with the emf, dโ is an element of the path from terminal A to terminal B, and โยทโ denotes the vector dot product. This equation applies only to locations A and B that are terminals, and does not apply to paths between points A and B with portions outside the source of emf. This equation involves the electrostatic electric field due to charge separation Ecs and does not involve (for example) any non-conservative component of electric field due to Faraday's law of induction.
In the case of a closed path in the presence of a varying magnetic field, the integral of the electric field around a closed loop may be nonzero; one common application of the concept of emf, known as "induced emf" is the voltage induced in a such a loop. The "induced emf" around a stationary closed path C is:
where now E is the entire electric field, conservative and non-conservative, and the integral is around an arbitrary but stationary closed curve C through which there is a varying magnetic field. Note that the electrostatic field does not contribute to the net emf around a circuit because the electrostatic portion of the electric field is conservative (that is, the work done against the field around a closed path is zero).
This definition can be extended to arbitrary sources of emf and moving paths C:
which is a conceptual equation mainly, because the determination of the "effective forces" is difficult.
Read more about this topic: Electromotive Force
Famous quotes containing the words formal, definitions and/or force:
“Then the justice,
In fair round belly with good capon lined,
With eyes severe and beard of formal cut,
Full of wise saws and modern instances;
And so he plays his part.”
—William Shakespeare (15641616)
“The loosening, for some people, of rigid role definitions for men and women has shown that dads can be great at calming babiesif they take the time and make the effort to learn how. Its that time and effort that not only teaches the dad how to calm the babies, but also turns him into a parent, just as the time and effort the mother puts into the babies turns her into a parent.”
—Pamela Patrick Novotny (20th century)
“Rich are the sea-gods:Mwho gives gifts but they?
They grope the sea for pearls, but more than pearls:
They pluck Force thence, and give it to the wise.
Every wave is wealth to Daedalus,
Wealth to the cunning artist who can work
This matchless strength. Where shall he find, O waves!
A load your Atlas shoulders cannot lift?”
—Ralph Waldo Emerson (18031882)