Range of The Spectrum
Electromagnetic waves are typically described by any of the following three physical properties: the frequency f, wavelength λ, or photon energy E. Frequencies observed in astronomy range from 2.4×1023 Hz (1 GeV gamma rays) down to the local plasma frequency of the ionized interstellar medium (~1 kHz). Wavelength is inversely proportional to the wave frequency, so gamma rays have very short wavelengths that are fractions of the size of atoms, whereas wavelengths can be as long as the universe. Photon energy is directly proportional to the wave frequency, so gamma ray photons have the highest energy (around a billion electron volts), while radio wave photons have very low energy (around a femtoelectronvolt). These relations are illustrated by the following equations:
where:
- c = 299,792,458 m/s is the speed of light in vacuum and
- h = 6.62606896(33)×10−34 J s = 4.13566733(10)×10−15 eV s is Planck's constant.
Whenever electromagnetic waves exist in a medium with matter, their wavelength is decreased. Wavelengths of electromagnetic radiation, no matter what medium they are traveling through, are usually quoted in terms of the vacuum wavelength, although this is not always explicitly stated.
Generally, electromagnetic radiation is classified by wavelength into radio wave, microwave, terahertz (or sub-millimeter) radiation, infrared, the visible region we perceive as light, ultraviolet, X-rays and gamma rays. The behavior of EM radiation depends on its wavelength. When EM radiation interacts with single atoms and molecules, its behavior also depends on the amount of energy per quantum (photon) it carries.
Spectroscopy can detect a much wider region of the EM spectrum than the visible range of 400 nm to 700 nm. A common laboratory spectroscope can detect wavelengths from 2 nm to 2500 nm. Detailed information about the physical properties of objects, gases, or even stars can be obtained from this type of device. Spectroscopes are widely used in astrophysics. For example, many hydrogen atoms emit a radio wave photon that has a wavelength of 21.12 cm. Also, frequencies of 30 Hz and below can be produced by and are important in the study of certain stellar nebulae and frequencies as high as 2.9×1027 Hz have been detected from astrophysical sources.
Read more about this topic: Electromagnetic Spectrum
Famous quotes containing the words range of and/or range:
“As to spelling the very frequent word though with six letters instead of two, it is impossible to discuss it, as it is outside the range of common sanity. In comparison such a monstrosity as phlegm for flem is merely disgusting.”
—George Bernard Shaw (18561950)
“The Canadians of those days, at least, possessed a roving spirit of adventure which carried them further, in exposure to hardship and danger, than ever the New England colonist went, and led them, though not to clear and colonize the wilderness, yet to range over it as coureurs de bois, or runners of the woods, or, as Hontan prefers to call them, coureurs de risques, runners of risks; to say nothing of their enterprising priesthood.”
—Henry David Thoreau (18171862)