Electrolytic Capacitor - History

History

The principle of the electrolytic capacitor was discovered in 1886 by Charles Pollak, as part of his research into anodizing of aluminum and other metals. Pollack discovered that due to the thinness of the aluminum oxide layer produced, there was a very high capacitance between the aluminum and the electrolyte solution. A major problem was that most electrolytes tended to dissolve the oxide layer again when the power is removed, but he eventually found that sodium borate (borax) would allow the layer to be formed and not attack it afterwards. He was granted a patent for the borax-solution aluminum electrolytic capacitor in 1897.

The first application of the technology was in making starting capacitors for single-phase alternating current (AC) motors. Although most electrolytic capacitors are polarized, that is, they can only be operated with direct current (DC), by separately anodizing aluminum plates and then interleaving them in a borax bath, it is possible to make a capacitor that can be used in AC systems.

Nineteenth and early twentieth century electrolytic capacitors bore little resemblance to modern types, their construction being more along the lines of a car battery. The borax electrolyte solution had to be periodically topped up with distilled water, again reminiscent of a lead acid battery.

The first major application of DC versions of this type of capacitor was in large telephone exchanges, to reduce relay hash (noise) on the 48 volt DC power supply. The development of AC-operated domestic radio receivers in the late 1920s created a demand for large-capacitance (for the time) high-voltage capacitors, typically at least 4 microfarads and rated at around 500 volts DC. Waxed paper and oiled silk capacitors were available, but devices with that order of capacitance and voltage rating were bulky and prohibitively expensive.

The ancestor of the modern electrolytic capacitor was patented by Julius Lilienfeld in 1926. Lilienfeld's design resembled that of a silver mica capacitor, but with electrolyte-soaked paper sheets in place of the mica dielectric. However, it proved impractical to adequately seal the devices, and in the hot conditions inside typical mains-operated radio receivers the capacitors quickly dried out and failed.

Retired US Navy engineer Ralph D. Mershon is credited with developing the first commercially available "radio" electrolytic capacitor that was used in any quantity (although other researchers produced broadly similar devices). The "Mershon Condenser" as it was known (condenser was the earlier term for capacitor) was constructed like a conventional paper capacitor, with two long strips of aluminum foil interwound with strips of insulating paper, but with the paper saturated with electrolyte solution instead of wax. Rather than trying to hermetically seal the devices, Mershon's solution was to simply fit the capacitor into an oversize aluminum or copper can, half-filled with extra electrolyte. These units are referred to as "wet electrolytics," and those with liquid still inside are prized by vintage radio collectors.

"Mershons" were an immediate success and the name "Mershon Condenser" was, for a short time, synonymous with quality radio receivers in the late 1920s. However, due to a number of manufacturing difficulties, their service life turned out to be quite short and Mershon's company went bankrupt in the early 1930s.

It was not until World War II, when sufficient resources were finally applied to finding the causes of electrolytic capacitor unreliability, that they started to become as reliable as they are today. A major advance was the process of etching and pre-anodizing the foil prior to assembly, which allowed the use of much less corrosive electrolyte solutions, which in turn meant the devices could be left unenergized for long periods without deterioration. Modern electrolytic capacitors can remain usable after lying idle for decades, whereas the original Mershons could not tolerate more than a few months without a polarizing voltage. Elaborate "re-forming" procedures were necessary to avoid damage to receivers that had not been used for some time.

Read more about this topic:  Electrolytic Capacitor

Famous quotes containing the word history:

    Three million of such stones would be needed before the work was done. Three million stones of an average weight of 5,000 pounds, every stone cut precisely to fit into its destined place in the great pyramid. From the quarries they pulled the stones across the desert to the banks of the Nile. Never in the history of the world had so great a task been performed. Their faith gave them strength, and their joy gave them song.
    William Faulkner (1897–1962)

    Well, for us, in history where goodness is a rare pearl, he who was good almost takes precedence over he who was great.
    Victor Hugo (1802–1885)

    When the landscape buckles and jerks around, when a dust column of debris rises from the collapse of a block of buildings on bodies that could have been your own, when the staves of history fall awry and the barrel of time bursts apart, some turn to prayer, some to poetry: words in the memory, a stained book carried close to the body, the notebook scribbled by hand—a center of gravity.
    Adrienne Rich (b. 1929)