Electrical Reactance - Phase Relationship

Phase Relationship

The phase of the voltage across a purely reactive device (a device with a resistance of zero) lags the current by radians for a capacitive reactance and leads the current by radians for an inductive reactance. Note that without knowledge of both the resistance and reactance the relationship between voltage and current cannot be determined.

The origin of the different signs for capacitive and inductive reactance is the phase factor in the impedance.

\begin{align} \tilde{Z}_C &= {1 \over \omega C}e^{j(-{\pi \over 2})} = j\left({- \frac{1}{\omega C}}\right) = jX_C \\ \tilde{Z}_L &= \omega Le^{j{\pi \over 2}} = j\omega L = jX_L\quad
\end{align}

For a reactive component the sinusoidal voltage across the component is in quadrature (a phase difference) with the sinusoidal current through the component. The component alternately absorbs energy from the circuit and then returns energy to the circuit, thus a pure reactance does not dissipate power.

Read more about this topic:  Electrical Reactance

Famous quotes containing the words phase and/or relationship:

    It no longer makes sense to speak of “feeding problems” or “sleep problems” or “negative behavior” is if they were distinct categories, but to speak of “problems of development” and to search for the meaning of feeding and sleep disturbances or behavior disorders in the developmental phase which has produced them.
    Selma H. Fraiberg (20th century)

    Christianity as an organized religion has not always had a harmonious relationship with the family. Unlike Judaism, it kept almost no rituals that took place in private homes. The esteem that monasticism and priestly celibacy enjoyed implied a denigration of marriage and parenthood.
    Beatrice Gottlieb, U.S. historian. The Family in the Western World from the Black Death to the Industrial Age, ch. 12, Oxford University Press (1993)