Electrical Impedance - Complex Voltage and Current

Complex Voltage and Current

In order to simplify calculations, sinusoidal voltage and current waves are commonly represented as complex-valued functions of time denoted as and .

\begin{align} V &= |V|e^{j(\omega t + \phi_V)} \\ I &= |I|e^{j(\omega t + \phi_I)}
\end{align}

Impedance is defined as the ratio of these quantities.

Substituting these into Ohm's law we have


\begin{align} |V| e^{j(\omega t + \phi_V)} &= |I| e^{j(\omega t + \phi_I)} |Z| e^{j\theta} \\ &= |I| |Z| e^{j(\omega t + \phi_I + \theta)}
\end{align}

Noting that this must hold for all, we may equate the magnitudes and phases to obtain

\begin{align} |V| &= |I| |Z| \\ \phi_V &= \phi_I + \theta
\end{align}

The magnitude equation is the familiar Ohm's law applied to the voltage and current amplitudes, while the second equation defines the phase relationship.

Read more about this topic:  Electrical Impedance

Famous quotes containing the words complex and/or current:

    The money complex is the demonic, and the demonic is God’s ape; the money complex is therefore the heir to and substitute for the religious complex, an attempt to find God in things.
    Norman O. Brown (b. 1913)

    Natural Man, in our current version, is a disgruntled adolescent.
    Mason Cooley (b. 1927)