Material Removal Mechanism
The first serious attempt of providing a physical explanation of the material removal during electric discharge machining is perhaps that of Van Dijck. Van Dijck presented a thermal model together with a computational simulation to explain the phenomena between the electrodes during electric discharge machining. However, as Van Dijck himself admitted in his study, the number of assumptions made to overcome the lack of experimental data at that time was quite significant.
Further models of what occurs during electric discharge machining in terms of heat transfer were developed in the late eighties and early nineties, including an investigation at Texas A&M University with the support of AGIE, now Agiecharmilles. It resulted in three scholarly papers: the first presenting a thermal model of material removal on the cathode, the second presenting a thermal model for the erosion occurring on the anode and the third introducing a model describing the plasma channel formed during the passage of the discharge current through the dielectric liquid. Validation of these models is supported by experimental data provided by AGIE.
These models give the most authoritative support for the claim that EDM is a thermal process, removing material from the two electrodes because of melting and/or vaporization, along with pressure dynamics established in the spark-gap by the collapsing of the plasma channel. However, for small discharge energies the models are inadequate to explain the experimental data. All these models hinge on a number of assumptions from such disparate research areas as submarine explosions, discharges in gases, and failure of transformers, so it is not surprising that alternative models have been proposed more recently in the literature trying to explain the EDM process.
Among these, the model from Singh and Ghosh reconnects the removal of material from the electrode to the presence of an electrical force on the surface of the electrode that could mechanically remove material and create the craters. This would be possible because the material on the surface has altered mechanical properties due to an increased temperature caused by the passage of electric current. The authors' simulations showed how they might explain EDM better than a thermal model (melting and/or evaporation), especially for small discharge energies, which are typically used in μ-EDM and in finishing operations.
Given the many available models, it appears that the material removal mechanism in EDM is not yet well understood and that further investigation is necessary to clarify it, especially considering the lack of experimental scientific evidence to build and validate the current EDM models. This explains an increased current research effort in related experimental techniques.
Read more about this topic: Electrical Discharge Machining
Famous quotes containing the words material, removal and/or mechanism:
“Measured by any standard known to scienceby horse-power, calories, volts, mass in any shape,the tension and vibration and volume and so-called progression of society were full a thousand times greater in 1900 than in 1800;Mthe force had doubled ten times over, and the speed, when measured by electrical standards as in telegraphy, approached infinity, and had annihilated both space and time. No law of material movement applied to it.”
—Henry Brooks Adams (18381918)
“If God now wills the removal of a great wrong, and wills also that we of the North as well as you of the South, shall pay fairly for our complicity in that wrong, impartial history will find therein new cause to attest and revere the justice and goodness of God.”
—Abraham Lincoln (18091865)
“Life is an offensive, directed against the repetitious mechanism of the Universe.”
—Alfred North Whitehead (18611947)