Energy and Motors
Most large electric transport systems are powered by stationary sources of electricity that are directly connected to the vehicles through wires. Electric traction allows the use of regenerative braking, in which the motors are used as brakes and become generators that transform the motion of, usually, a train into electrical power that is then fed back into the lines. This system is particularly advantageous in mountainous operations, as descending vehicles can produce a large portion of the power required for those ascending. This regenerative system is only viable if the system is large enough to utilise the power generated by descending vehicles.
In the systems above motion is provided by a rotary electric motor. However, it is possible to "unroll" the motor to drive directly against a special matched track. These linear motors are used in maglev trains which float above the rails supported by magnetic levitation. This allows for almost no rolling resistance of the vehicle and no mechanical wear and tear of the train or track. In addition to the high-performance control systems needed, switching and curving of the tracks becomes difficult with linear motors, which to date has restricted their operations to high-speed point to point services.
Read more about this topic: Electric Vehicle
Famous quotes containing the words energy and/or motors:
“A great number of the disappointments and mishaps of the troubled world are the direct result of literature and the allied arts. It is our belief that no human being who devotes his life and energy to the manufacture of fantasies can be anything but fundamentally inadequate”
—Christopher Hampton (b. 1946)
“When General Motors has to go to the bathroom ten times a day, the whole countrys ready to let go. You heard of that market crash in 29? I predicted that.... I was nursing a director of General Motors. Kidney ailment, they said; nerves, I said. Then I asked myself, Whats General Motors got to be nervous about? Overproduction, I says. Collapse.”
—John Michael Hayes (b. 1919)