Electric Power Transmission
Electric-power transmission is the bulk transfer of electrical energy, from generating power plants to electrical substations located near demand centers. This is distinct from the local wiring between high-voltage substations and customers, which is typically referred to as electric power distribution.
Transmission lines, when interconnected with each other, become transmission networks. In the US, these are typically referred to as "power grids" or just "the grid." In the UK, the network is known as the "National Grid." North America has three major grids, the Western Interconnection, the Eastern Interconnection and the Electric Reliability Council of Texas (ERCOT) grid, often referred to as the Western System, the Eastern System and the Texas System.
Historically, transmission and distribution lines were owned by the same company, but starting in the 1990s, many countries have liberalized the regulation of the electricity market in ways that have led to the separation of the electricity transmission business from the distribution business.
Most transmission lines use high-voltage three-phase alternating current (AC), although single phase AC is sometimes used in railway electrification systems. High-voltage direct-current (HVDC) technology is used for greater efficiency in very long distances (typically hundreds of miles (kilometres), or in submarine power cables (typically longer than 30 miles (50 km). HVDC links are also used to stabilize against control problems in large power distribution networks where sudden new loads or blackouts in one part of a network can otherwise result in synchronization problems and cascading failures.
Electricity is transmitted at high voltages (110 kV or above) to reduce the energy lost in long-distance transmission. Power is usually transmitted through overhead power lines. Underground power transmission has a significantly higher cost and greater operational limitations but is sometimes used in urban areas or sensitive locations.
A key limitation in the distribution of electric power is that, with minor exceptions, electrical energy cannot be stored, and therefore must be generated as needed. A sophisticated control system is required to ensure electric generation very closely matches the demand. If the demand for power exceeds the supply, generation plants and transmission equipment can shut down which, in the worst cases, can lead to a major regional blackout, such as occurred in the US Northeast blackouts of 1965, 1977, 2003, and in 1996 and 2011. To reduce the risk of such failures, electric transmission networks are interconnected into regional, national or continental wide networks thereby providing multiple redundant alternative routes for power to flow should (weather or equipment) failures occur. Much analysis is done by transmission companies to determine the maximum reliable capacity of each line (ordinarily less than its physical or thermal limit) to ensure spare capacity is available should there be any such failure in another part of the network.
Read more about Electric Power Transmission: Overhead Transmission, Underground Transmission, History, Bulk Power Transmission, High-voltage Direct Current, Limitations, Control, Communications, Electricity Market Reform, Cost of Electric Power Transmission, Merchant Transmission, Health Concerns, Government Policy, Security of Control Systems, Records
Famous quotes containing the words electric power, electric and/or power:
“Wisdom is like electricity. There is no permanently wise man, but men capable of wisdom, who, being put into certain company, or other favorable conditions, become wise for a short time, as glasses rubbed acquire electric power for a while.”
—Ralph Waldo Emerson (18031882)
“The widest prairies have electric fences....”
—Philip Larkin (19221986)
“Relying ... on the patronage of your good will, I advance with obedience to the work, ready to retire from it whenever you become sensible how much better choice it is in your power to make.”
—Thomas Jefferson (17431826)