History
Although electricity had been known to be produced as a result of the chemical reactions that take place in an electrolytic cell since Alessandro Volta developed the voltaic pile in 1800, its production by this means was, and still is, expensive. In 1831, Michael Faraday devised a machine that generated electricity from rotary motion, but it took almost 50 years for the technology to reach a commercially viable stage. In 1878, in the US, Thomas Edison developed and sold a commercially viable replacement for gas lighting and heating using locally generated and distributed direct current electricity.
The world's first public electricity supply was provided in late 1881, when the streets of the Surrey town of Godalming in the UK were lit with electric light. This system was powered from a water wheel on the River Wey, which drove a Siemens alternator that supplied a number of arc lamps within the town. This supply scheme also provided electricity to a number of shops and premises to light 34 incandescent Swan light bulbs.
Additionally, Robert Hammond, in December 1881, demonstrated the new electric light in the Sussex town of Brighton in the UK for a trial period. The ensuing success of this installation enabled Hammond to put this venture on both a commercial and legal footing, as a number of shop owners wanted to use the new electric light. Thus the Hammond Electricity Supply Co. was launched. Whilst the Godalming and Holborn Viaduct Schemes closed after a few years the Brighton Scheme continued on, and supply was in 1887 made available for 24 hours per day.
In early 1882, Edison opened the world’s first steam-powered electricity generating station at Holborn Viaduct in London, where he had entered into an agreement with the City Corporation for a period of three months to provide street lighting. In time he had supplied a number of local consumers with electric light. The method of supply was direct current (DC).
It was later on in the year in September 1882 that Edison opened the Pearl Street Power Station in New York City and again it was a DC supply. It was for this reason that the generation was close to or on the consumer's premises as Edison had no means of voltage conversion. The voltage chosen for any electrical system is a compromise. Increasing the voltage reduces the current and therefore reduces the required wire thickness. Unfortunately it also increases the danger from direct contact and increases the required insulation thickness. Furthermore some load types were difficult or impossible to make work with higher voltages. The overall effect was that Edison's system required power stations to be within a mile of the consumers. While this could work in city centres, it would be unable to economically supply suburbs with power.
Nikola Tesla, who had worked for Edison for a short time and understood the electrical theory in a way that Edison did not, devised an alternative system using alternating current. Tesla realised that while doubling the voltage would halve the current and reduce losses by three-quarters, only an alternating current system allowed the transformation between voltage levels in different parts of the system. This allowed efficient high voltages for distribution where their risks could easily be mitigated by good design while still allowing fairly safe voltages to be supplied to the loads. He went on to develop the overall theory of his system, devising theoretical and practical alternatives for all of the direct current appliances then in use, and patented his novel ideas in 1887, in thirty separate patents.
In 1888, Tesla's work came to the attention of George Westinghouse, who owned a patent for a type of transformer that could deal with high power and was easy to make. Westinghouse had been operating an alternating current lighting plant in Great Barrington, Massachusetts since 1886. While Westinghouse's system could use Edison's lights and had heaters, it did not have a motor. With Tesla and his patents, Westinghouse built a power system for a gold mine in Telluride, Colorado in 1891, with a water driven 100 horsepower (75 kW) generator powering a 100 horsepower (75 kW) motor over a 2.5-mile (4 km) power line. Almarian Decker finally invented the whole system of three-phase power generating in Redlands, California in 1893. Then, in a deal with General Electric, which Edison had been forced to sell, Westinghouse's company went on to construct the Adams Power Plant at the Niagara Falls, with three 5,000 horsepower (3.7 MW) Tesla generators supplying electricity to an aluminium smelter at Niagara and the town of Buffalo 22 miles (35 km) away. The Niagara power station commenced operation on April 20, 1895.
The two systems competed for a while, during a period called the War of Currents. The DC system was able to claim slightly greater safety, but this difference was not great enough to overwhelm the enormous technical and economic advantages of alternating current which eventually won out.
Tesla's alternating current system remains the primary means of delivering electrical energy to consumers throughout the world. While high-voltage direct current (HVDC) is increasingly being used to transmit large quantities of electricity over long distances or to connect adjacent asynchronous power systems, the bulk of electricity generation, transmission, distribution and retailing takes place using alternating current.
Read more about this topic: Electric Power Industry
Famous quotes containing the word history:
“A man acquainted with history may, in some respect, be said to have lived from the beginning of the world, and to have been making continual additions to his stock of knowledge in every century.”
—David Hume (17111776)
“Let us not underrate the value of a fact; it will one day flower in a truth. It is astonishing how few facts of importance are added in a century to the natural history of any animal. The natural history of man himself is still being gradually written.”
—Henry David Thoreau (18171862)
“In the history of the human mind, these glowing and ruddy fables precede the noonday thoughts of men, as Aurora the suns rays. The matutine intellect of the poet, keeping in advance of the glare of philosophy, always dwells in this auroral atmosphere.”
—Henry David Thoreau (18171862)