In atomic, molecular, and solid-state physics, the electric field gradient (EFG) measures the rate of change of the electric field at an atomic nucleus generated by the electronic charge distribution and the other nuclei. The EFG couples with the nuclear electric quadrupole moment of quadrupolar nuclei (those with spin quantum number greater than one-half) to generate an effect which can be measured using several spectroscopic methods, such as nuclear magnetic resonance (NMR), electron paramagnetic resonance (EPR, ESR), nuclear quadrupole resonance (NQR), Mössbauer spectroscopy or perturbed angular correlation (PAC). The EFG is non-zero only if the charges surrounding the nucleus violate cubic symmetry and therefore generate an inhomogeneous electric field at the position of the nucleus.
EFGs are highly sensitive to the electronic density in the immediate vicinity of a nucleus. This is because the EFG operator scales as r−3, where r is the distance from a nucleus. This sensitivity has been used to study effects on charge distribution resulting from substitution, weak interactions, and charge transfer.
Read more about Electric Field Gradient: Definition
Famous quotes containing the words electric and/or field:
“The more I see of democracy the more I dislike it. It just brings everything down to the mere vulgar level of wages and prices, electric light and water closets, and nothing else.”
—D.H. (David Herbert)
“I learn immediately from any speaker how much he has already lived, through the poverty or the splendor of his speech. Life lies behind us as the quarry from whence we get tiles and copestones for the masonry of today. This is the way to learn grammar. Colleges and books only copy the language which the field and the work-yard made.”
—Ralph Waldo Emerson (18031882)