In atomic, molecular, and solid-state physics, the electric field gradient (EFG) measures the rate of change of the electric field at an atomic nucleus generated by the electronic charge distribution and the other nuclei. The EFG couples with the nuclear electric quadrupole moment of quadrupolar nuclei (those with spin quantum number greater than one-half) to generate an effect which can be measured using several spectroscopic methods, such as nuclear magnetic resonance (NMR), electron paramagnetic resonance (EPR, ESR), nuclear quadrupole resonance (NQR), Mössbauer spectroscopy or perturbed angular correlation (PAC). The EFG is non-zero only if the charges surrounding the nucleus violate cubic symmetry and therefore generate an inhomogeneous electric field at the position of the nucleus.
EFGs are highly sensitive to the electronic density in the immediate vicinity of a nucleus. This is because the EFG operator scales as r−3, where r is the distance from a nucleus. This sensitivity has been used to study effects on charge distribution resulting from substitution, weak interactions, and charge transfer.
Read more about Electric Field Gradient: Definition
Famous quotes containing the words electric and/or field:
“Flabby, bald, lobotomized,
he drifted in a sheepish calm,
where no agonizing reappraisal
jarred his concentration of the electric chair
hanging like an oasis in his air
of lost connections. . . .”
—Robert Lowell (19171977)
“The woman ... turned her melancholy tone into a scolding one. She was not very young, and the wrinkles in her face were filled with drops of water which had fallen from her eyes, which, with the yellowness of her complexion, made a figure not unlike a field in the decline of the year, when the harvest is gathered in and a smart shower of rain has filled the furrows with water. Her voice was so shrill that they all jumped into the coach as fast as they could and drove from the door.”
—Sarah Fielding (17101768)