Electric Car - Hobbyists, Conversions, and Racing

Hobbyists, Conversions, and Racing

Hobbyists often build their own EVs by converting existing production cars to run solely on electricity. There is a cottage industry supporting the conversion and construction of BEVs by hobbyists. Universities such as the University of California, Irvine even build their own custom electric or hybrid-electric cars from scratch.

Short-range battery electric vehicles can offer the hobbyist comfort, utility, and quickness, sacrificing only range. Short-range EVs may be built using high-performance lead–acid batteries, using about half the mass needed for a 100 to 130 km (60 to 80 mi) range. The result is a vehicle with about a 50 km (30 mi) range, which, when designed with appropriate weight distribution (40/60 front to rear), does not require power steering, offers exceptional acceleration in the lower end of its operating range, and is freeway capable and legal. But their EVs are expensive due to the higher cost for these higher-performance batteries. By including a manual transmission, short-range EVs can obtain both better performance and greater efficiency than the single-speed EVs developed by major manufacturers. Unlike the converted golf carts used for neighborhood electric vehicles, short-range EVs may be operated on typical suburban throughways (where 60–80 km/h / 35-50 mph speed limits are typical) and can keep up with traffic typical on such roads and the short "slow-lane" on-and-off segments of freeways common in suburban areas.

Faced with chronic fuel shortage on the Gaza Strip, Palestinian electrical engineer Waseem Othman al-Khozendar invented in 2008 a way to convert his car to run on 32 electric batteries. According to al-Khozendar, the batteries can be charged with US$2 worth of electricity to drive from 180 to 240 km (110 to 150 mi). After a 7-hour charge, the car should also be able to run up to a speed of 100 km/h (60 mph).

Japanese Professor Hiroshi Shimizu from Faculty of Environmental Information of the Keio University created an electric limousine: the Eliica (Electric Lithium-Ion Car) has eight wheels with electric 55 kW hub motors (8WD) with an output of 470 kW and zero emissions, a top speed of 370 km/h (230 mph), and a maximum range of 320 km (200 mi) provided by lithium-ion batteries. However, current models cost approximately US$300,000, about one third of which is the cost of the batteries.

In 2008, several Chinese manufacturers began marketing lithium iron phosphate (LiFePO4) batteries directly to hobbyists and vehicle conversion shops. These batteries offered much better power-to-weight ratios allowing vehicle conversions to typically achieve 75 to 150 mi (120 to 240 km) per charge. Prices gradually declined to approximately US$350 per kW·h by mid 2009. As the LiFePO4 cells feature life ratings of 3,000 cycles, compared to typical lead acid battery ratings of 300 cycles, the life expectancy of LiFePO4 cells is around 10 years. This has led to a resurgence in the number of vehicles converted by individuals. LiFePO4 cells do require more expensive battery management and charging systems than lead acid batteries.

Electric drag racing is a sport where electric vehicles start from standstill and attempt the highest possible speed over a short given distance. They sometimes race and usually beat gasoline sports cars. Organizations such as NEDRA keep track of records world wide using certified equipment.

Read more about this topic:  Electric Car

Famous quotes containing the word racing:

    Upscale people are fixated with food simply because they are now able to eat so much of it without getting fat, and the reason they don’t get fat is that they maintain a profligate level of calorie expenditure. The very same people whose evenings begin with melted goat’s cheese ... get up at dawn to run, break for a mid-morning aerobics class, and watch the evening news while racing on a stationary bicycle.
    Barbara Ehrenreich (b. 1941)