Undesired Arcing
Undesired or unintended electric arcing can have detrimental effects on electric power transmission, distribution systems and electronic equipment. Devices which may cause arcing include switches, circuit breakers, relay contacts, fuses and poor cable terminations. When an inductive circuit is switched off the current cannot instantaneously jump to zero; a transient arc will be formed across the separating contacts. Switching devices susceptible to arcing are normally designed to contain and extinguish an arc, and snubber circuits can supply a path for transient currents, preventing arcing. If a circuit has enough current and voltage to sustain an arc formed outside of a switching device, the arc can cause damage to equipment such as melting of conductors, destruction of insulation, and fire. An arc flash describes an explosive electrical event that presents a hazard to people and equipment.
Undesired arcing in electrical contactors can be suppressed by various devices, including:
- immersion in transformer oil, dielectric gas or vacuum
- arc chutes
- magnetic blowouts
Arcing can also occur when a low resistance channel (foreign object, conductive dust, moisture...) forms between places with different potential. The conductive channel then can facilitate formation of an electric arc. The ionized air has high electrical conductivity approaching that of metals, and can conduct extremely high currents, causing a short circuit and tripping protective devices (fuses, circuit breakers). Similar situation may occur when a lightbulb burns out and the fragments of the filament pull an electric arc between the leads inside the bulb, leading to overcurrent that trips the breakers.
Electric arc over the surface of plastics causes their degradation. A conductive carbon-rich track tends to form in the arc path, negatively influencing their insulation properties. The arc susceptibility is tested according to ASTM D495, by point electrodes and continuous and intermittent arcs; it is measured in seconds to form a track that is conductive under high-voltage low-current conditions. Some materials are less susceptible to degradation than others; e.g. polytetrafluoroethylene has arc resistance of about 200 seconds. From thermosetting plastics, alkyds and melamine resins are better than phenolic resins. Polyethylenes have arc resistance of about 150 seconds, polystyrenes and polyvinyl chlorides have relatively low resistance of about 70 seconds. Plastics can be formulated to emit gases with arc-extinguishing properties; these are known as arc-extinguishing plastics.
Arcing over some types of printed circuit boards, possibly due to cracks of the traces or the failure of a solder, renders the affected insulating layer conductive as the dielectric is combusted due to the high temperatures involved. This conductivity prolongs the arcing due to cascading failure of the surface.
The energy of electrical current contact arc yields ozone (O3), along with other compounds such as nitrous oxides (NO, NOx) and other chemicals and particulates. Unsuppressed arcing breaks down the chemical bonds of the atmospheric gases surrounding the contacts as well as some of the molten metal of the contact material itself. Free ions in and around the arc recombine to create new chemical compounds (for example, breaking atmospheric oxygen into single oxygen, which then recombine creating ozone . These chemicals and particulates are most pronounced when operating contactors, as they typically conduct higher contact power and run in the open. Ozone is most easily noticed during operation due to its distinct odor. Another environmental impact of undesired arcing is the shortening of product life by contact degradation.
Read more about this topic: Electric Arc