Ejection Seat - Egress Systems

Egress Systems

The "standard" ejection system operates in two stages. First, the entire canopy or hatch above the aviator is opened or jettisoned, and the seat and occupant are launched through the opening. In most earlier aircraft this required two separate actions by the aviator, while later egress system designs, such as the Advanced Concept Ejection Seat model 2 (ACES II), perform both functions as a single action.

The ACES II ejection seat is used in most American-built fighters. The A-10 uses connected firing handles that activate both the canopy jettison systems, followed by the seat ejection. The F-15 has the same connected system as the A-10 seat. Both handles accomplish the same task, so pulling either one suffices. The F-16 has only one handle located between the pilot's knees, since the cockpit is too narrow for side-mounted handles.

Non-standard egress systems include Downward Track (used for some crew positions in bomber aircraft, including the B-52 Stratofortress), Canopy Destruct (CD) and Through-Canopy Penetration (TCP), Drag Extraction, Encapsulated Seat, and even Crew Capsule.

Early models of the F-104 Starfighter were equipped with a Downward Track ejection seat due to the hazard of the T-tail. In order to make this work, the pilot was equipped with "spurs" which were attached to cables that would pull the legs inward so the pilot could be ejected. Following this development, some other egress systems began using leg retractors as a way to prevent injuries to flailing legs, and to provide a more stable center of gravity. Some models of the F-104 were equipped with upward-ejecting seats.

Similarly, two of the six ejection seats on the B-52 Stratofortress fire downward, through hatch openings on the bottom of the aircraft; the downward hatches are released from the aircraft by a thruster that unlocks the hatch, while gravity and wind remove the hatch and arm the seat. The four seats on the forward upper deck (two of them, EWO and Gunner, facing the rear of the airplane) fire upwards as usual. Any such downward-firing system is of no use on or near the ground if aircraft is in level flight at the time of the ejection.

Aircraft designed for low-level use sometimes have ejection seats which fire through the canopy, as waiting for the canopy to be ejected is too slow. Many aircraft types (e.g., the BAe Hawk and the Harrier line of aircraft) use Canopy Destruct systems, which have an explosive cord (MDC - Miniature Detonation Cord or FLSC - Flexible Linear Shaped Charge) embedded within the acrylic plastic of the canopy. The MDC is initiated when the eject handle is pulled, and shatters the canopy over the seat a few milliseconds before the seat is launched. This system was developed for the Hawker Siddeley Harrier family of VTOL aircraft as ejection may be necessary while the aircraft was in the hover, and jettisoning the canopy might result in the pilot and seat striking it.

Through-Canopy Penetration is similar to Canopy Destruct, but a sharp spike on the top of the seat, known as the "shell tooth," strikes the underside of the canopy and shatters it. The A-10 Thunderbolt II is equipped with canopy breakers on either side of its headrest in the event that the canopy fails to jettison. In ground emergencies, a ground crewman or pilot can use a breaker knife attached to the inside of the canopy to shatter the transparency. The A-6 Intruder and EA-6B Prowler seats are capable of ejecting through the canopy, with canopy jettison a separate option if there is enough time.

CD and TCP systems cannot be used with canopies made of flexible materials, such as the Lexan polycarbonate canopy used on the F-16.

Soviet VTOL naval fighter planes such as the Yakovlev Yak-38 were equipped with ejection seats which were automatically activated during at least some part of the flight envelope.

Drag Extraction is the lightest and simplest egress system available, and has been used on many experimental aircraft. Halfway between simply "bailing out" and using explosive-eject systems, Drag Extraction uses the airflow past the aircraft (or spacecraft) to move the aviator out of the cockpit and away from the stricken craft on a guide rail. Some operate like a standard ejector seat, by jettisoning the canopy, then deploying a drag chute into the airflow. That chute pulls the occupant out of the aircraft, either with the seat or following release of the seat straps, who then rides off the end of a rail extending far enough out to help clear the structure. In the case of the Space Shuttle, the astronauts would have ridden a long, curved rail, blown by the wind against their bodies, then deployed their chutes after free-falling to a safe altitude.

Encapsulated Seat egress systems were developed for use in the B-58 Hustler and B-70 Valkyrie supersonic bombers. These seats were enclosed in an air-operated clamshell, which permitted the aircrew to escape at airspeeds high enough to cause bodily harm. These seats were designed to allow the pilot to control the plane even with the clamshell closed, and the capsule would float in case of water landings.

Some aircraft designs, such as the General Dynamics F-111, do not have individual ejection seats, but instead, the entire section of the airframe containing the crew can be ejected as a single capsule. In this system, very powerful rockets are used, and multiple large parachutes are used to bring the capsule down, in a manner similar to the Launch Escape System of the Apollo spacecraft. On landing, an airbag system is used to cushion the landing, and this also acts as a flotation device if the Crew Capsule lands in water.

Read more about this topic:  Ejection Seat

Famous quotes containing the word systems:

    No civilization ... would ever have been possible without a framework of stability, to provide the wherein for the flux of change. Foremost among the stabilizing factors, more enduring than customs, manners and traditions, are the legal systems that regulate our life in the world and our daily affairs with each other.
    Hannah Arendt (1906–1975)