Eisenstein Series - Eisenstein Series For The Modular Group

Eisenstein Series For The Modular Group

Let be a complex number with strictly positive imaginary part. Define the holomorphic Eisenstein series of weight where is an integer, by the following series:


G_{2k}(\tau) = \sum_{ (m,n)\in\mathbb{Z}^2\backslash(0,0)} \frac{1}{(m+n\tau )^{2k}}.

This series absolutely converges to a holomorphic function of in the upper half-plane and its Fourier expansion given below shows that it extends to a holomorphic function at It is a remarkable fact that the Eisenstein series is a modular form. Indeed, the key property is its invariance. Explicitly if and then


G_{2k} \left( \frac{ a\tau +b}{ c\tau + d} \right) = (c\tau +d)^{2k} G_{2k}(\tau)

and is therefore a modular form of weight . Note that it is important to assume that otherwise it would be illegitimate to change the order of summation, and the -invariance would not hold. In fact, there are no nontrivial modular forms of weight 2. Nevertheless, an analogue of the holomorphic Eisenstein series can be defined even for although it would only be a quasimodular form.

Read more about this topic:  Eisenstein Series

Famous quotes containing the words series and/or group:

    In the order of literature, as in others, there is no act that is not the coronation of an infinite series of causes and the source of an infinite series of effects.
    Jorge Luis Borges (1899–1986)

    Even in harmonious families there is this double life: the group life, which is the one we can observe in our neighbour’s household, and, underneath, another—secret and passionate and intense—which is the real life that stamps the faces and gives character to the voices of our friends. Always in his mind each member of these social units is escaping, running away, trying to break the net which circumstances and his own affections have woven about him.
    Willa Cather (1873–1947)