Eisenstein Series For The Modular Group
Let be a complex number with strictly positive imaginary part. Define the holomorphic Eisenstein series of weight where is an integer, by the following series:
This series absolutely converges to a holomorphic function of in the upper half-plane and its Fourier expansion given below shows that it extends to a holomorphic function at It is a remarkable fact that the Eisenstein series is a modular form. Indeed, the key property is its invariance. Explicitly if and then
and is therefore a modular form of weight . Note that it is important to assume that otherwise it would be illegitimate to change the order of summation, and the -invariance would not hold. In fact, there are no nontrivial modular forms of weight 2. Nevertheless, an analogue of the holomorphic Eisenstein series can be defined even for although it would only be a quasimodular form.
Read more about this topic: Eisenstein Series
Famous quotes containing the words series and/or group:
“Rosalynn said, Jimmy, if we could only get Prime Minister Begin and President Sadat up here on this mountain for a few days, I believe they might consider how they could prevent another war between their countries. That gave me the idea, and a few weeks later, I invited both men to join me for a series of private talks. In September 1978, they both came to Camp David.”
—Jimmy Carter (James Earl Carter, Jr.)
“The conflict between the need to belong to a group and the need to be seen as unique and individual is the dominant struggle of adolescence.”
—Jeanne Elium (20th century)