Einstein Tensor
General relativity |
---|
Introduction Mathematical formulation Resources |
Fundamental concepts
Special relativity Equivalence principle World line · Riemannian geometry |
Phenomena
Kepler problem · Lenses · Waves Frame-dragging · Geodetic effect Event horizon · Singularity Black hole |
Equations
Linearized gravity Post-Newtonian formalism Einstein field equations Geodesic equation Friedmann equations ADM formalism BSSN formalism |
Advanced theories
Kaluza–Klein Quantum gravity |
Solutions
Schwarzschild Reissner–Nordström · Gödel Kerr · Kerr–Newman Kasner · Taub-NUT · Milne · Robertson–Walker pp-wave · van Stockum dust |
Scientists
Einstein · Lorentz · Hilbert · Poincare · Schwarzschild · Sitter · Reissner · Nordström · Weyl · Eddington · Friedman · Milne · Zwicky · Lemaître · Gödel · Wheeler · Robertson · Bardeen · Walker · Kerr · Chandrasekhar · Ehlers · Penrose · Hawking · Taylor · Hulse · Stockum · Taub · Newman · Thorne others |
Spacetime
Spacetime Minkowski spacetime Spacetime diagrams Spacetime in General relativity |
In differential geometry, the Einstein tensor (also trace-reversed Ricci tensor), named after Albert Einstein, is used to express the curvature of a Riemannian manifold. In general relativity, the Einstein tensor occurs in the Einstein field equations for gravitation describing spacetime curvature in a manner consistent with energy considerations.
Read more about Einstein Tensor: Definition, Explicit Form, Trace, Use in General Relativity
Famous quotes containing the word einstein:
“As far as the laws of mathematics refer to reality, they are not certain, and as far as they are certain, they do not refer to reality.”
—Albert Einstein (18791955)
Related Phrases
Related Words