Counting Solutions
The following table gives the number of solutions for placing n queens on an n × n board, both unique (sequence A002562 in OEIS) and distinct (sequence A000170 in OEIS), for n=1–14, 24–26.
n: | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | .. | 24 | 25 | 26 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
unique: | 1 | 0 | 0 | 1 | 2 | 1 | 6 | 12 | 46 | 92 | 341 | 1,787 | 9,233 | 45,752 | .. | 28,439,272,956,934 | 275,986,683,743,434 | 2,789,712,466,510,289 |
distinct: | 1 | 0 | 0 | 2 | 10 | 4 | 40 | 92 | 352 | 724 | 2,680 | 14,200 | 73,712 | 365,596 | .. | 227,514,171,973,736 | 2,207,893,435,808,352 | 22,317,699,616,364,044 |
Note that the six queens puzzle has fewer solutions than the five queens puzzle.
There is currently no known formula for the exact number of solutions.
Read more about this topic: Eight Queens Puzzle
Famous quotes containing the words counting and/or solutions:
“But counting up to two
Is harder to do....”
—Philip Larkin (19221986)
“Those great ideas which come to you in your sleep just before you awake in morning, those solutions to the worlds problems which, in the light of day, turn out to be duds of the puniest order, couldnt they be put to some use, after all?”
—Robert Benchley (18891945)
Related Phrases
Related Words