Counting Solutions
The following table gives the number of solutions for placing n queens on an n × n board, both unique (sequence A002562 in OEIS) and distinct (sequence A000170 in OEIS), for n=1–14, 24–26.
n: | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | .. | 24 | 25 | 26 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
unique: | 1 | 0 | 0 | 1 | 2 | 1 | 6 | 12 | 46 | 92 | 341 | 1,787 | 9,233 | 45,752 | .. | 28,439,272,956,934 | 275,986,683,743,434 | 2,789,712,466,510,289 |
distinct: | 1 | 0 | 0 | 2 | 10 | 4 | 40 | 92 | 352 | 724 | 2,680 | 14,200 | 73,712 | 365,596 | .. | 227,514,171,973,736 | 2,207,893,435,808,352 | 22,317,699,616,364,044 |
Note that the six queens puzzle has fewer solutions than the five queens puzzle.
There is currently no known formula for the exact number of solutions.
Read more about this topic: Eight Queens Puzzle
Famous quotes containing the words counting and/or solutions:
“But counting up to two
Is harder to do....”
—Philip Larkin (19221986)
“Every man is in a state of conflict, owing to his attempt to reconcile himself and his relationship with life to his conception of harmony. This conflict makes his soul a battlefield, where the forces that wish this reconciliation fight those that do not and reject the alternative solutions they offer. Works of art are attempts to fight out this conflict in the imaginative world.”
—Rebecca West (18921983)