Definition
Informally, if P is any polyhedron or polytope, and tP is the polytope formed by expanding P by a factor of t in each dimension, then L(int P, t) is the number of integer lattice points in tP.
More formally, consider a lattice L in Euclidean space Rn and a d-dimensional polytope P in Rn, and assume that all the vertices of the polytope are points of the lattice. (A common example is L = Zn and a polytope with all its vertex coordinates being integers.) For any positive integer t, let tP be the t-fold dilation of P (the polytope formed by multiplying each vertex coordinate, in a basis for the lattice, by a factor of t), and let
be the number of lattice points contained in tP. Ehrhart showed in 1962 that L is a rational polynomial of degree d in t, i.e. there exist rational numbers a0,...,ad such that:
- L(P, t) = adtd + ad−1td−1 + … + a0 for all positive integers t.
The Ehrhart polynomial of the interior of a closed convex polytope P can be computed as:
- L(int P, t) = (−1)n L(P, −t).
Read more about this topic: Ehrhart Polynomial
Famous quotes containing the word definition:
“According to our social pyramid, all men who feel displaced racially, culturally, and/or because of economic hardships will turn on those whom they feel they can order and humiliate, usually women, children, and animalsjust as they have been ordered and humiliated by those privileged few who are in power. However, this definition does not explain why there are privileged men who behave this way toward women.”
—Ana Castillo (b. 1953)
“Was man made stupid to see his own stupidity?
Is God by definition indifferent, beyond us all?
Is the eternal truth mans fighting soul
Wherein the Beast ravens in its own avidity?”
—Richard Eberhart (b. 1904)
“Its a rare parent who can see his or her child clearly and objectively. At a school board meeting I attended . . . the only definition of a gifted child on which everyone in the audience could agree was mine.”
—Jane Adams (20th century)