Open Problems
- For more information on this subject, see odd greedy expansion and Erdős–Straus conjecture.
Some notable problems remain unsolved with regard to Egyptian fractions, despite considerable effort by mathematicians.
- The Erdős–Straus conjecture concerns the length of the shortest expansion for a fraction of the form 4/n. Does an expansion
-
- exist for every n? It is known to be true for all n < 1014, and for all but a vanishingly small fraction of possible values of n, but the general truth of the conjecture remains unknown.
- It is unknown whether an odd greedy expansion exists for every fraction with an odd denominator. If Fibonacci's greedy method is modified so that it always chooses the smallest possible odd denominator, under what conditions does this modified algorithm produce a finite expansion? An obvious necessary condition is that the starting fraction x/y have an odd denominator y, and it is conjectured but not known that this is also a sufficient condition. It is known (Breusch 1954; Stewart 1954) that every x/y with odd y has an expansion into distinct odd unit fractions, constructed using a different method than the greedy algorithm.
- It is possible to use brute-force search algorithms to find the Egyptian fraction representation of a given number with the fewest possible terms (Stewart 1992) or minimizing the largest denominator; however, such algorithms can be quite inefficient. The existence of polynomial time algorithms for these problems, or more generally the computational complexity of such problems, remains unknown.
Guy (2004) describes these problems in more detail and lists numerous additional open problems.
Read more about this topic: Egyptian Fraction
Famous quotes containing the words open and/or problems:
“Wild Bill was indulging in his favorite pastime of a friendly game of cards in the old No. 10 saloon. For the second time in his career, he was sitting with his back to an open door. Jack McCall walked in, shot him through the back of the head, and rushed from the place, only to be captured shortly afterward. Wild Bills dead hand held aces and eights, and from that time on this has been known in the West as the dead mans hand.”
—State of South Dakota, U.S. public relief program (1935-1943)
“It is not impossible, of course, after such an administration as Roosevelts and after the change in method that I could not but adapt in view of my different way of looking at things, that questions should arise as to whether I should go back on the principles of the Roosevelt administration.... I have a government of limited power under a Constitution, and we have got to work out our problems on the basis of law. Now, if that is reactionary, then I am a reactionary.”
—William Howard Taft (18571930)