Hybridogenesis
Pelophylax kl. esculentus is the fertile hybrid of the Pool Frog (Pelophylax lessonae) and the Marsh Frog (Pelophylax ridibundus), hence the addition of the "kl." (for klepton) in the species name.
During the ice ages, the population of the common ancestor of both species was split into two. These populations diverged, but remained genetically close enough to be able to create fertile hybrids. However, when edible frogs mate with each other, their offspring are often malformed, so there are no pure populations of edible frogs.
The hybrid populations are propagated predominantly by female edible frogs mating with males of one of the parental species (P. kl. esculentus × P. lessonae or rarely × P. ridibundus).
Hybridogenesis implies that gametes of hybrids don't contain mixed parental genomes, as normally occurs by independent chromosome segregation and crossover in meiosis (see also second Mendel's law, recombination), but intact one of them or two. Usually because one entire genome of the parental species is excluded prior to meiosis during gametogenesis.
So hybridogenesis is a hemiclonal mode of reproduction — half of a hybrid genome is transmitted intact clonally from generation to generation (R genome in the L-E system) — not recombined with a parental species genome (L here), while the other half (L) is transmitted sexually — obtained each generation by sexual reproduction with a parental species (P. lessonae in the L-E system).
In the most widespread, so called L-E (lessonae-esculentus) hybridogenetic population system, frogs P. kl. esculentus exclude the P. lessonae genome and make exclusively clonal P. ridibunda gametes (see image above). In other words edible frogs produce gametes of marsh frogs! There are however other systems known, of which the R-E (ridibundus-esculentus) system is best known. In this case frogs P. kl. esculentus predominantly (but not exclusively) produce P. lessonae gametes.
In the L-E system P. kl. esculentus must mate with P. lessonae to produce new hybrids, in the R-E system with P. ridibundus (see image on the left). P. lessonae and P. ridibundus have distinct habitat requirements and usually don't occur together.
Moreover P. kl. esculentus frogs can be not only diploid hybrids (LR), but in some areas also triploid (LLR and LRR) and even tetraploid (LLRR). Triploid hybrids enable P. kl. esculentus populations to persist without the parental species — P. lessonae and P. ridibundus, however there are still gaps in the knowledge of how this system works.
|
||||||||||||||||||||||||||||||||||||
Maintenance of pure (all-hybrid) P. kl. esculentus populations, without P. lessonae and ridibundus. L, R - P. lessonae and ridibundus haploid genomes, * females only (eggs), |
-
A swimming frog
-
Copulation trial between two males
-
Proof of cannibalism
-
Close-up of the frog head
-
Close-up of the head, other perspective
-
Edible frog on a human arm
Read more about this topic: Edible Frog