Morphology
Forms of Ediacaran fossil | |
---|---|
The earliest discovered potential embryo, preserved within an acanthomorphic acritarch. The term 'acritarch' describes a range of unclassified cell-like fossils. | |
Tateana inflata (= 'Cyclomedusa' radiata) is the attachment disk of an unknown organism. Metric scale. | |
A cast of the quilted Charnia, the first accepted complex Precambrian organism. Charnia was once interpreted as a relative of the sea pens. | |
Spriggina, a possible precursor to the trilobites, may be one of the predators that led to the demise of the Ediacaran fauna and subsequent diversification of animals. | |
A late Ediacaran Archaeonassa-type trace fossils are commonly preserved on the top surfaces of sandstone strata. | |
Epibaion waggoneris, chain of trace platforms and the imprint of the body of Yorgia waggoneri (right), which created these traces on microbial mat. |
The Ediacaran biota exhibited a vast range of morphological characteristics. Size ranged from millimetres to metres; complexity from "blob-like" to intricate; rigidity from sturdy and resistant to jelly-soft. Almost all forms of symmetry were present. These organisms differed from earlier fossils by displaying an organised, differentiated multicellular construction and centimetre-plus sizes.
These disparate morphologies can be broadly grouped into form taxa:
- "Embryos"
- Recent discoveries of Precambrian multicellular life have been dominated by reports of embryos, particularly from the Doushantuo Formation in China. Some finds generated intense media excitement though some have claimed they are instead inorganic structures formed by the precipitation of minerals on the inside of a hole. Other "embryos" have been interpreted as the remains of the giant sulfur-reducing bacteria akin to Thiomargarita, a view which is highly contested yet gradually gaining supporters.
- Microfossils dating from 632.5 million years ago – just 3 million years after the end of the Cryogenian glaciations – may represent embryonic 'resting stages' in the life cycle of the earliest known animals. An alternative proposal is that these structures represent adult stages of the multicellular organisms of this period.
- Discs
- Circular fossils, such as Ediacaria, Cyclomedusa and Rugoconites led to the initial identification of Ediacaran fossils as cnidaria which include jellyfish and corals. Further examination has provided alternative interpretations of all disc-shaped fossils: not one is now confidently recognised as a jellyfish. Alternate explanations include holdfasts and protists; the patterns displayed where two meet have led to many 'individuals' being identified as microbial colonies, and yet others may represent scratch marks formed as stalked organisms spun around their holdfasts. Useful diagnostic characters are often lacking because only the underside of the organism is preserved by fossilization.
- Bags
- Fossils such as Pteridinium preserved within sediment layers resemble "mud-filled bags". The scientific community is a long way from reaching a consensus on their interpretation.
- Toroids
- The fossil Vendoglossa tuberculata from the Nama Group, Namibia, has been interpreted as a dorso-ventrally compressed stem-group metazoan, with a large gut cavity and a transversely ridged ectoderm. The organism is in the shape of a flattened torus, with the long axis of its toroidal body running through the approximate center of the presumed gut cavity.
- Quilted organisms
- The organisms considered in Seilacher's revised definition of the Vendobionta share a "quilted" appearance and resembled an inflatable mattress. Sometimes these quilts would be torn or ruptured prior to preservation: such damaged specimens provide valuable clues in the reconstruction process. For example the three (or more) petaloid fronds of Swartpuntia germsi could only be recognised in a posthumously damaged specimen – usually multiple fronds were hidden as burial squashed the organisms flat.
- These organisms appear to form two groups: the fractal rangeomorphs and the simpler erniettomorphs. Including such fossils as the iconic Charnia and Swartpuntia, the group is both the most iconic of the Ediacaran biota and the most difficult to place within the existing tree of life. Lacking any mouth, gut, reproductive organs, or indeed any evidence of internal anatomy, their lifestyle was somewhat peculiar by modern standards; the most widely accepted hypothesis holds that they sucked nutrients out of the surrounding seawater by osmotrophy or osmosis.
- Non-Ediacaran Ediacarans
- Some Ediacaran organisms have more complex details preserved which has allowed them to be interpreted as possible early forms of living phyla excluding them from some definitions of the Ediacaran biota.
- The earliest such fossil is the reputed bilaterian Vernanimalcula claimed by some, however, to represent the infilling of an egg-sac or acritarch. Later examples are almost universally accepted as bilaterians and include the mollusc-like Kimberella, Spriggina (pictured) and the shield-shaped Parvancorina whose affinities are currently debated.
- A suite of fossils known as the Small shelly fossils are represented in the Ediacaran, most famously by Cloudina a shelly tube-like fossil that often shows evidence of predatory boring, suggesting that whilst predation may not have been common in the Ediacaran Period it was at least present.
- Representatives of modern taxa existed in the Ediacaran, some of which are recognisable today. Sponges, red and green algæ, protists and bacteria are all easily recognisable with some pre-dating the Ediacaran by thousands of millions of years . Possible arthropods have also been described.
- Trace fossils
- With the exception of some very simple vertical burrows the only Ediacaran burrows are horizontal, lying on or just below the surface. Such burrows have been taken to imply the presence of motile organisms with heads which would probably have had a bilateral symmetry. This could place them in the bilateral clade of animals but they could also have been made by simpler organisms feeding as they slowly rolled along the sea floor. Putative "burrows" dating as far back as 1,100 million years may have been made by animals which fed on the undersides of microbial mats which would have shielded them from a chemically unpleasant ocean; however their uneven width and tapering ends make a biological origin so difficult to defend that even the original proponent no longer believes they are authentic.
- The burrows observed imply simple behaviour, and the complex efficient feeding traces common from the start of the Cambrian are absent. Some Ediacaran fossils, especially discs, have been interpreted tentatively as trace fossils but this hypothesis has not gained widespread acceptance. As well as burrows, some trace fossils have been found directly associated with an Ediacaran fossil. Yorgia and Dickinsonia are often found at the end of long pathways of trace fossils matching their shape; these fossils are thought to be associated with ciliary feeding but the precise method of formation of these disconnected and overlapping fossils largely remains a mystery. The potential mollusc Kimberella is associated with scratch marks, perhaps formed by a radula.
Read more about this topic: Ediacaran Biota
Famous quotes containing the word morphology:
“I ascribe a basic importance to the phenomenon of language.... To speak means to be in a position to use a certain syntax, to grasp the morphology of this or that language, but it means above all to assume a culture, to support the weight of a civilization.”
—Frantz Fanon (19251961)