Earnshaw's Theorem - Explanation

Explanation

Informally, the case of a point charge in an arbitrary static electric field is a simple consequence of Gauss's law. For a particle to be in a stable equilibrium, small perturbations ("pushes") on the particle in any direction should not break the equilibrium; the particle should "fall back" to its previous position. This means that the force field lines around the particle's equilibrium position should all point inwards, towards that position. If all of the surrounding field lines point towards the equilibrium point, then the divergence of the field at that point must be negative (i.e. that point acts as a sink). However, Gauss's Law says that the divergence of any possible electric force field is zero in free space. In mathematical notation, an electrical force deriving from a potential will always be divergenceless (satisfy Laplace's equation):

Therefore, there are no local minima or maxima of the field potential in free space, only saddle points. A stable equilibrium of the particle cannot exist and there must be an instability in at least one direction.

To be completely rigorous, strictly speaking, the existence of a stable point does not require that all neighboring force vectors point exactly toward the stable point; the force vectors could spiral in towards the stable point, for example. One method for dealing with this invokes the fact that, in addition to the divergence, the curl of any electric field in free space is also zero (in the absence of any magnetic currents).

This theorem also states that there is no possible static configuration of ferromagnets which can stably levitate an object against gravity, even when the magnetic forces are stronger than the gravitational forces.

Earnshaw's theorem has even been proven for the general case of extended bodies, and this is so even if they are flexible and conducting, provided they are not diamagnetic, as diamagnetism constitutes a (small) repulsive force, but no attraction.

There are, however, several exceptions to the rule's assumptions which allow magnetic levitation.

Read more about this topic:  Earnshaw's Theorem

Famous quotes containing the word explanation:

    How strange a scene is this in which we are such shifting figures, pictures, shadows. The mystery of our existence—I have no faith in any attempted explanation of it. It is all a dark, unfathomed profound.
    Rutherford Birchard Hayes (1822–1893)

    The explanation of the propensity of the English people to portrait painting is to be found in their relish for a Fact. Let a man do the grandest things, fight the greatest battles, or be distinguished by the most brilliant personal heroism, yet the English people would prefer his portrait to a painting of the great deed. The likeness they can judge of; his existence is a Fact. But the truth of the picture of his deeds they cannot judge of, for they have no imagination.
    Benjamin Haydon (1786–1846)

    What causes adolescents to rebel is not the assertion of authority but the arbitrary use of power, with little explanation of the rules and no involvement in decision-making. . . . Involving the adolescent in decisions doesn’t mean that you are giving up your authority. It means acknowledging that the teenager is growing up and has the right to participate in decisions that affect his or her life.
    Laurence Steinberg (20th century)