Classification of Semisimple Lie Algebras
For more details on this topic, see Semisimple Lie algebra#Classification.The fundamental interest in Dynkin diagrams is that they classify semisimple Lie algebras over algebraically closed fields. One classifies such Lie algebras via their root system, which can be represented by a Dynkin diagram. One then classifies Dynkin diagrams according to the constraints they must satisfy, as described below.
Dropping the direction on the graph edges corresponds to replacing a root system by the finite reflection group it generates, the so-called Weyl group, and thus undirected Dynkin diagrams classify Weyl groups.
Read more about this topic: Dynkin Diagram
Famous quotes containing the word lie:
“The point is children lie to others for good and sufficient reasons, but they dont kid themselves. They know who did what, but they feel no moral imperative to inform grownups.”
—Leontine Young (20th century)