Dynamical System - Local Dynamics

Local Dynamics

The qualitative properties of dynamical systems do not change under a smooth change of coordinates (this is sometimes taken as a definition of qualitative): a singular point of the vector field (a point where v(x) = 0) will remain a singular point under smooth transformations; a periodic orbit is a loop in phase space and smooth deformations of the phase space cannot alter it being a loop. It is in the neighborhood of singular points and periodic orbits that the structure of a phase space of a dynamical system can be well understood. In the qualitative study of dynamical systems, the approach is to show that there is a change of coordinates (usually unspecified, but computable) that makes the dynamical system as simple as possible.

Read more about this topic:  Dynamical System

Famous quotes containing the words local and/or dynamics:

    The local is a shabby thing. There’s nothing worse than bringing us back down to our own little corner, our own territory, the radiant promiscuity of the face to face. A culture which has taken the risk of the universal, must perish by the universal.
    Jean Baudrillard (b. 1929)

    Anytime we react to behavior in our children that we dislike in ourselves, we need to proceed with extreme caution. The dynamics of everyday family life also have a way of repeating themselves.
    Cathy Rindner Tempelsman (20th century)