Algebraic Dual Space
Given any vector space V over a field F, the dual space V* is defined as the set of all linear maps φ: V → F (linear functionals). The dual space V* itself becomes a vector space over F when equipped with the following addition and scalar multiplication:
for all φ, ψ ∈ V*, x ∈ V, and a ∈ F. Elements of the algebraic dual space V* are sometimes called covectors or one-forms.
The pairing of a functional φ in the dual space V* and an element x of V is sometimes denoted by a bracket: φ(x) = or φ(x) = ⟨φ,x⟩. The pairing defines a nondegenerate bilinear mapping : V* × V → F.
Read more about this topic: Dual Space
Famous quotes containing the words algebraic, dual and/or space:
“I have no scheme about it,no designs on men at all; and, if I had, my mode would be to tempt them with the fruit, and not with the manure. To what end do I lead a simple life at all, pray? That I may teach others to simplify their lives?and so all our lives be simplified merely, like an algebraic formula? Or not, rather, that I may make use of the ground I have cleared, to live more worthily and profitably?”
—Henry David Thoreau (18171862)
“Thee for my recitative,
Thee in the driving storm even as now, the snow, the winter-day
declining,
Thee in thy panoply, thy measurd dual throbbing and thy beat
convulsive,
Thy black cylindric body, golden brass and silvery steel,”
—Walt Whitman (18191892)
“Play is a major avenue for learning to manage anxiety. It gives the child a safe space where she can experiment at will, suspending the rules and constraints of physical and social reality. In play, the child becomes master rather than subject.... Play allows the child to transcend passivity and to become the active doer of what happens around her.”
—Alicia F. Lieberman (20th century)