Drosophila Melanogaster - Model Organism in Genetics

Model Organism in Genetics

Drosophila melanogaster is one of the most studied organisms in biological research, particularly in genetics and developmental biology. There are several reasons:

  • Its care and culture requires little equipment and uses little space even when using large cultures, and the overall cost is low.
  • It is small and easy to grow in the laboratory and their morphology is easy to identify once they are anesthetized (usually with ether, carbon dioxide gas, by cooling them, or with products like FlyNap)
  • It has a short generation time (about 10 days at room temperature) so several generations can be studied within a few weeks.
  • It has a high fecundity (females lay up to 100 eggs per day, and perhaps 2000 in a lifetime).
  • Males and females are readily distinguished and virgin females are easily isolated, facilitating genetic crossing.
  • The mature larvae show giant chromosomes in the salivary glands called polytene chromosomes—"puffs" indicate regions of transcription and hence gene activity.
  • It has only four pairs of chromosomes: three autosomes, and one sex chromosome.
  • Males do not show meiotic recombination, facilitating genetic studies.
  • Recessive lethal "balancer chromosomes" carrying visible genetic markers can be used to keep stocks of lethal alleles in a heterozygous state without recombination due to multiple inversions in the balancer.
  • Genetic transformation techniques have been available since 1987.
  • Its complete genome was sequenced and first published in 2000.

Read more about this topic:  Drosophila Melanogaster

Famous quotes containing the words model and/or organism:

    For an artist to marry his model is as fatal as for a gourmet to marry his cook: the one gets no sittings, and the other gets no dinners.
    Oscar Wilde (1854–1900)

    The problems of the world, AIDS, cancer, nuclear war, pollution, are, finally, no more solvable than the problem of a tree which has borne fruit: the apples are overripe and they are falling—what can be done?... Nothing can be done, and nothing needs to be done. Something is being done—the organism is preparing to rest.
    David Mamet (b. 1947)