Drain induced barrier lowering or DIBL is a secondary effect in MOSFETs referring originally to a reduction of threshold voltage of the transistor at higher drain voltages. The origin of the threshold decrease can be understood as a consequence of charge neutrality: the Yau charge-sharing model. The combined charge in the depletion region of the device and that in the channel of the device is balanced by three electrode charges: the gate, the source and the drain. As drain voltage is increased, the depletion region of the p-n junction between the drain and body increases in size and extends under the gate, so the drain assumes a greater portion of the burden of balancing depletion region charge, leaving a smaller burden for the gate. As a result, the charge present on the gate retains charge balance by attracting more carriers into the channel, an effect equivalent to lowering the threshold voltage of the device.
In effect, the channel becomes more attractive for electrons. In other words, the potential energy barrier for electrons in the channel is lowered. Hence the term "barrier lowering" is used to describe these phenomena. Unfortunately, it is not easy to come up with accurate analytical results using the barrier lowering concept.
Barrier lowering increases as channel length is reduced, even at zero applied drain bias, because the source and drain form pn junctions with the body, and so have associated built-in depletion layers associated with them that become significant partners in charge balance at short channel lengths, even with no reverse bias applied to increase depletion widths.
The term DIBL has expanded beyond the notion of simple threshold adjustment, however, and refers to a number of drain-voltage effects upon MOSFET I-V curves that go beyond description in terms of simple threshold voltage changes, as described below.
As channel length is reduced, the effects of DIBL in the subthreshold region (weak inversion) show up initially as a simple translation of the subthreshold current vs. gate bias curve with change in drain-voltage, which can be modeled as a simple change in threshold voltage with drain bias. However, at shorter lengths the slope of the current vs. gate bias curve is reduced, that is, it requires a larger change in gate bias to effect the same change in drain current. At extremely short lengths, the gate entirely fails to turn the device off. These effects cannot be modeled as a threshold adjustment.
DIBL also affects the current vs. drain bias curve in the active mode, causing the current to increase with drain bias, lowering the MOSFET output resistance. This increase is additional to the normal channel length modulation effect on output resistance, and cannot always be modeled as a threshold adjustment.
DIBL can reduce the device operating frequency as well, as described by the following equation:
Where is the supply voltage and is the threshold voltage.
Famous quotes containing the words drain, induced, barrier and/or lowering:
“Why is it so difficult to see the lesbianeven when she is there, quite plainly, in front of us? In part because she has been ghostedMor made to seem invisibleby culture itself.... Once the lesbian has been defined as ghostlythe better to drain her of any sensual or moral authorityshe can then be exorcised.”
—Terry Castle, U.S. lesbian author. The Apparitional Lesbian, ch. 1 (1993)
“Few can be induced to labor exclusively for posterity; and none will do it enthusiastically. Posterity has done nothing for us; and theorize on it as we may, practically we shall do very little for it, unless we are made to think we are at the same time doing something for ourselves.”
—Abraham Lincoln (18091865)
“... social evils are dangerously contagious. The fixed policy of persecution and injustice against a class of women who are weak and defenseless will be necessarily hurtful to the cause of all women.”
—Fannie Barrier Williams (18551944)
“Science is a dynamic undertaking directed to lowering the degree of the empiricism involved in solving problems; or, if you prefer, science is a process of fabricating a web of interconnected concepts and conceptual schemes arising from experiments and observations and fruitful of further experiments and observations.”
—James Conant (18931978)