Double Pendulum - Chaotic Motion

Chaotic Motion

The double pendulum undergoes chaotic motion, and shows a sensitive dependence on initial conditions. The image to the right shows the amount of elapsed time before the pendulum "flips over," as a function of initial conditions. Here, the initial value of θ1 ranges along the x-direction, from −3 to 3. The initial value θ2 ranges along the y-direction, from −3 to 3. The colour of each pixel indicates whether either pendulum flips within (green), within (red), (purple) or (blue). Initial conditions that don't lead to a flip within are plotted white.

The boundary of the central white region is defined in part by energy conservation with the following curve:


3 \cos \theta_1 + \cos \theta_2 = 2. \,

Within the region defined by this curve, that is if


3 \cos \theta_1 + \cos \theta_2 > 2, \,

then it is energetically impossible for either pendulum to flip. Outside this region, the pendulum can flip, but it is a complex question to determine when it will flip.

The lack of a natural excitation frequency has led to the use of double pendulum systems in seismic resistance designs in buildings, where the building itself is the primary inverted pendulum, and a secondary mass is connected to complete the double pendulum.

Read more about this topic:  Double Pendulum

Famous quotes containing the words chaotic and/or motion:

    The attitude that nature is chaotic and that the artist puts order into it is a very absurd point of view, I think. All that we can hope for is to put some order into ourselves.
    Willem De Kooning (b. 1904)

    It is the fixed that horrifies us, the fixed that assails us with the tremendous force of mindlessness. The fixed is a Mason jar, and we can’t beat it open. ...The fixed is a world without fire--dead flint, dead tinder, and nowhere a spark. It is motion without direction, force without power, the aimless procession of caterpillars round the rim of a vase, and I hate it because at any moment I myself might step to that charmed and glistening thread.
    Annie Dillard (b. 1945)