Double Pendulum - Analysis

Analysis

Several variants of the double pendulum may be considered; the two limbs may be of equal or unequal lengths and masses, they may be simple pendulums or compound pendulums (also called complex pendulums) and the motion may be in three dimensions or restricted to the vertical plane. In the following analysis, the limbs are taken to be identical compound pendulums of length and mass, and the motion is restricted to two dimensions.

In a compound pendulum, the mass is distributed along its length. If the mass is evenly distributed, then the center of mass of each limb is at its midpoint, and the limb has a moment of inertia of about that point.

It is convenient to use the angles between each limb and the vertical as the generalized coordinates defining the configuration of the system. These angles are denoted θ1 and θ2. The position of the center of mass of each rod may be written in terms of these two coordinates. If the origin of the Cartesian coordinate system is taken to be at the point of suspension of the first pendulum, then the center of mass of this pendulum is at:


x_1 = \frac{\ell}{2} \sin \theta_1,

y_1 = -\frac{\ell}{2} \cos \theta_1

and the center of mass of the second pendulum is at


x_2 = \ell \left ( \sin \theta_1 + \frac{1}{2} \sin \theta_2 \right ),

y_2 = -\ell \left ( \cos \theta_1 + \frac{1}{2} \cos \theta_2 \right ).

This is enough information to write out the Lagrangian.

Read more about this topic:  Double Pendulum

Famous quotes containing the word analysis:

    A commodity appears at first sight an extremely obvious, trivial thing. But its analysis brings out that it is a very strange thing, abounding in metaphysical subtleties and theological niceties.
    Karl Marx (1818–1883)

    The spider-mind acquires a faculty of memory, and, with it, a singular skill of analysis and synthesis, taking apart and putting together in different relations the meshes of its trap. Man had in the beginning no power of analysis or synthesis approaching that of the spider, or even of the honey-bee; but he had acute sensibility to the higher forces.
    Henry Brooks Adams (1838–1918)

    ... the big courageous acts of life are those one never hears of and only suspects from having been through like experience. It takes real courage to do battle in the unspectacular task. We always listen for the applause of our co-workers. He is courageous who plods on, unlettered and unknown.... In the last analysis it is this courage, developing between man and his limitations, that brings success.
    Alice Foote MacDougall (1867–1945)