- For the theorem of propositional logic based on the same concept, see double negation.
In propositional logic, double negative elimination (also called double negation elimination, double negative introduction, double negation introduction, or simply double negation) are two valid rules of replacement. They are the inferences that if A is true, then not not-A is true and its converse, that, if not not-A is true, then A is true. The rule allows one to introduce or eliminate a negation from a logical proof. The rule is based on the equivalence of, for example, It is false that it is not raining. and It is raining.
The double negation introduction rule is:
- P ¬¬P
and the double negation elimination rule is:
- ¬¬P P
Where "" is a metalogical symbol representing "can be replaced in a proof with."
Read more about Double Negative Elimination: Formal Notation
Famous quotes containing the words double, negative and/or elimination:
“I know [my label], in any case: a double face, a charming Janus, and underneath, the house motto: Be wary. On my business cards: Jean-Baptiste Clamence, actor.”
—Albert Camus (19131960)
“The negative always wins at last, but I like it none the better for that.”
—Mason Cooley (b. 1927)
“To reduce the imagination to a state of slaveryeven though it would mean the elimination of what is commonly called happinessis to betray all sense of absolute justice within oneself. Imagination alone offers me some intimation of what can be.”
—André Breton (18961966)