Statement of The Theorem
Let {ƒn} be a sequence of real-valued measurable functions on a measure space (S, Σ, μ). Suppose that the sequence converges pointwise to a function ƒ and is dominated by some integrable function g in the sense that
for all numbers n in the index set of the sequence and all points x in S. Then ƒ is integrable and
which also implies
Remarks:
- The statement 'g is integrable' is meant in the sense of Lebesgue; that is
- The convergence of the sequence and domination by g can be relaxed to hold only μ-almost everywhere provided the measure space (S, Σ, μ) is complete or ƒ is chosen as a measurable function which agrees μ-almost everywhere with the μ-almost everywhere existing pointwise limit. (These precautions are necessary, because otherwise there might exist a non-measurable subset of a μ-null set N ∈ Σ, hence ƒ might not be measurable.)
- The condition that there is a dominating integrable function g can be relaxed to uniform integrability of the sequence {ƒn}, see Vitali convergence theorem.
Read more about this topic: Dominated Convergence Theorem
Famous quotes containing the words statement of the, statement of, statement and/or theorem:
“It is commonplace that a problem stated is well on its way to solution, for statement of the nature of a problem signifies that the underlying quality is being transformed into determinate distinctions of terms and relations or has become an object of articulate thought.”
—John Dewey (18591952)
“Eroticism has its own moral justification because it says that pleasure is enough for me; it is a statement of the individuals sovereignty.”
—Mario Vargas Llosa (b. 1936)
“It is commonplace that a problem stated is well on its way to solution, for statement of the nature of a problem signifies that the underlying quality is being transformed into determinate distinctions of terms and relations or has become an object of articulate thought.”
—John Dewey (18591952)
“To insure the adoration of a theorem for any length of time, faith is not enough, a police force is needed as well.”
—Albert Camus (19131960)