Domain theory is a branch of mathematics that studies special kinds of partially ordered sets (posets) commonly called domains. Consequently, domain theory can be considered as a branch of order theory. The field has major applications in computer science, where it is used to specify denotational semantics, especially for functional programming languages. Domain theory formalizes the intuitive ideas of approximation and convergence in a very general way and has close relations to topology. An alternative important approach to denotational semantics in computer science is that of metric spaces.
Read more about Domain Theory: Motivation and Intuition, A Guide To The Formal Definitions, Important Results, Generalizations
Famous quotes containing the words domain and/or theory:
“No domain of nature is quite closed to man at all times.”
—Henry David Thoreau (18171862)
“By the mud-sill theory it is assumed that labor and education are incompatible; and any practical combination of them impossible. According to that theory, a blind horse upon a tread-mill, is a perfect illustration of what a laborer should beall the better for being blind, that he could not tread out of place, or kick understandingly.... Free labor insists on universal education.”
—Abraham Lincoln (18091865)