Domain (ring Theory)

Domain (ring Theory)

In mathematics, especially in the area of abstract algebra known as ring theory, a domain is a ring such that ab = 0 implies that either a = 0 or b = 0. That is, it is a ring which has no left or right zero divisors. (Sometimes such a ring is said to "have the zero-product property.") Some authors require the ring to be nontrivial (that is, it must have more than one element). If the domain has a multiplicative identity (which we may call 1), this is equivalent to saying that 1 ≠ 0 Thus a domain is a nontrivial ring without left or right zero divisors. A commutative domain with 1 ≠ 0 is called an integral domain.

A finite domain is automatically a finite field by Wedderburn's little theorem.

Zero divisors have a topological interpretation, at least in the case of commutative rings: a ring R is an integral domain, if and only if it is reduced and its spectrum Spec R is an irreducible topological space. The first property is often considered to encode some infinitesimal information, whereas the second one is more geometric.

An example: the ring k/(xy), where k is a field, is not a domain, as the images of x and y in this ring are zero divisors. Geometrically, this corresponds to the fact that the spectrum of this ring, which is the union of the lines x = 0 and y = 0, is not irreducible. Indeed, these two lines are its irreducible components.

Read more about Domain (ring Theory):  Constructions of Domains, Examples, Group Rings and The Zero Divisor Problem

Famous quotes containing the word domain:

    The vice named surrealism is the immoderate and impassioned use of the stupefacient image or rather of the uncontrolled provocation of the image for its own sake and for the element of unpredictable perturbation and of metamorphosis which it introduces into the domain of representation; for each image on each occasion forces you to revise the entire Universe.
    Louis Aragon (1897–1982)