DNA Vaccination - Delivery Methods

Delivery Methods

DNA vaccines have been introduced into animal tissues by a number of different methods. These delivery methods are briefly reviewed in Table 2, with the advantages and disadvantages of the most commonly used methods summarised in Table 3.

The two most popular approaches are injection of DNA in saline, using a standard hypodermic needle, and gene gun delivery. A schematic outline of the construction of a DNA vaccine plasmid and its subsequent delivery by these two methods into a host is illustrated at Scientific American. Injection in saline is normally conducted intramuscularly (IM) in skeletal muscle, or intradermally (ID), with DNA being delivered to the extracellular spaces. This can be assisted by electroporation; by temporarily damaging muscle fibres with myotoxins such as bupivacaine; or by using hypertonic solutions of saline or sucrose. Immune responses to this method of delivery can be affected by many factors, including needle type, needle alignment, speed of injection, volume of injection, muscle type, and age, sex and physiological condition of the animal being injected.

Gene gun delivery, the other commonly used method of delivery, ballistically accelerates plasmid DNA (pDNA) that has been adsorbed onto gold or tungsten microparticles into the target cells, using compressed helium as an accelerant.

Alternative delivery methods have included aerosol instillation of naked DNA on mucosal surfaces, such as the nasal and lung mucosa, and topical administration of pDNA to the eye and vaginal mucosa. Mucosal surface delivery has also been achieved using cationic liposome-DNA preparations, biodegradable microspheres, attenuated Shigella or Listeria vectors for oral administration to the intestinal mucosa, and recombinant adenovirus vectors.

The method of delivery determines the dose of DNA required to raise an effective immune response. Saline injections require variable amounts of DNA, from 10 μg-1 mg, whereas gene gun deliveries require 100 to 1000 times less DNA than intramuscular saline injection to raise an effective immune response. Generally, 0.2 μg – 20 μg are required, although quantities as low as 16 ng have been reported. These quantities vary from species to species, with mice, for example, requiring approximately 10 times less DNA than primates. Saline injections require more DNA because the DNA is delivered to the extracellular spaces of the target tissue (normally muscle), where it has to overcome physical barriers (such as the basal lamina and large amounts of connective tissue, to mention a few) before it is taken up by the cells, while gene gun deliveries bombard DNA directly into the cells, resulting in less “wastage”.

Another approach to DNA vaccination is expression library immunization (ELI). Using this technique, potentially all the genes from a pathogen can be delivered at one time, which may be useful for pathogens which are difficult to attenuate or culture. ELI can be used to identify which of the pathogen’s genes induce a protective response. This has been tested with Mycoplasma pulmonis, a murine lung pathogen with a relatively small genome, and it was found that even partial expression libraries can induce protection from subsequent challenge.

Table 2. Summary of Plasmid DNA delivery methods
Method of Delivery Formulation of DNA Target Tissue Amount of DNA
Parenteral Injection (hypodermic needle) Aqueous solution in saline IM (skeletal); ID; (IV, subcutaneous and intraperitoneal with variable success) Large amounts (approximately 100-200 μg)
Gene Gun DNA-coated gold beads ED (abdominal skin); vaginal mucosa; surgically exposed muscle and other organs Small amounts (as little as 16 ng)
Pneumatic (Jet) Injection Aqueous solution ED Very high (as much as 300 μg)
Topical application Aqueous solution Ocular; intravaginal Small amounts (up to 100 μg)
Cytofectin-mediated Liposomes (cationic); microspheres; recombinant adenovirus vectors; attenuated Shigella vector; aerosolised cationic lipid formulations IM; IV (to transfect tissues systemically); intraperitoneal; oral immunization to the intestinal mucosa; nasal/lung mucosal membranes variable
Table 3. Advantages and disadvantages of commonly used DNA vaccine delivery methods
Method of Delivery Advantage Disadvantage
Intramuscular or Intradermal injection
  • No special delivery mechanism
  • Permanent or semi-permanent expression
  • pDNA spreads rapidly throughout the body
  • Inefficient site for uptake due to morphology of muscle tissue
  • Relatively large amounts of DNA used
  • Th1 response may not be the response required
Gene Gun
  • DNA bombarded directly into cells
  • Small amounts DNA
  • Th2 response may not be the response required
  • Requires inert particles as carrier
Jet injection
  • No particles required
  • DNA can be delivered to cells mm to cm below skin surface
  • Significant shearing of DNA after high-pressure expulsion
  • 10-fold lower expression, and lower immune response
  • Requires large amounts of DNA (up to 300 μg)
Liposome-mediated delivery
  • High levels of immune response can be generated
  • Can increase transfection of intravenously delivered pDNA
  • Intravenously delivered liposome-DNA complexes can potentially transfect all tissues
  • Intranasally delivered liposome-DNA complexes can result in expression in distal mucosa as well as nasal muscosa and the generation of IgA antibodies
  • Toxicity
  • Ineffectiveness in serum
  • Risk of disease or immune reactions

Read more about this topic:  DNA Vaccination

Famous quotes containing the words delivery and/or methods:

    There was no speculation so promising, or at the same time so praisworthy, as the United Metropolitan Improved Hot Muffin and Crumpet Baking and Punctual Delivery Company.
    Charles Dickens (1812–1870)

    We are lonesome animals. We spend all our life trying to be less lonesome. One of our ancient methods is to tell a story begging the listener to say—and to feel—”Yes, that’s the way it is, or at least that’s the way I feel it. You’re not as alone as you thought.”
    John Steinbeck (1902–1968)